This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A polynomial over the ring R evaluates to an element in R . (Contributed by SN, 12-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evlcl.q | |- Q = ( I eval R ) |
|
| evlcl.p | |- P = ( I mPoly R ) |
||
| evlcl.b | |- B = ( Base ` P ) |
||
| evlcl.k | |- K = ( Base ` R ) |
||
| evlcl.i | |- ( ph -> I e. V ) |
||
| evlcl.r | |- ( ph -> R e. CRing ) |
||
| evlcl.f | |- ( ph -> F e. B ) |
||
| evlcl.a | |- ( ph -> A e. ( K ^m I ) ) |
||
| Assertion | evlcl | |- ( ph -> ( ( Q ` F ) ` A ) e. K ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlcl.q | |- Q = ( I eval R ) |
|
| 2 | evlcl.p | |- P = ( I mPoly R ) |
|
| 3 | evlcl.b | |- B = ( Base ` P ) |
|
| 4 | evlcl.k | |- K = ( Base ` R ) |
|
| 5 | evlcl.i | |- ( ph -> I e. V ) |
|
| 6 | evlcl.r | |- ( ph -> R e. CRing ) |
|
| 7 | evlcl.f | |- ( ph -> F e. B ) |
|
| 8 | evlcl.a | |- ( ph -> A e. ( K ^m I ) ) |
|
| 9 | eqid | |- ( R ^s ( K ^m I ) ) = ( R ^s ( K ^m I ) ) |
|
| 10 | eqid | |- ( Base ` ( R ^s ( K ^m I ) ) ) = ( Base ` ( R ^s ( K ^m I ) ) ) |
|
| 11 | ovexd | |- ( ph -> ( K ^m I ) e. _V ) |
|
| 12 | 1 4 2 9 | evlrhm | |- ( ( I e. V /\ R e. CRing ) -> Q e. ( P RingHom ( R ^s ( K ^m I ) ) ) ) |
| 13 | 5 6 12 | syl2anc | |- ( ph -> Q e. ( P RingHom ( R ^s ( K ^m I ) ) ) ) |
| 14 | 3 10 | rhmf | |- ( Q e. ( P RingHom ( R ^s ( K ^m I ) ) ) -> Q : B --> ( Base ` ( R ^s ( K ^m I ) ) ) ) |
| 15 | 13 14 | syl | |- ( ph -> Q : B --> ( Base ` ( R ^s ( K ^m I ) ) ) ) |
| 16 | 15 7 | ffvelcdmd | |- ( ph -> ( Q ` F ) e. ( Base ` ( R ^s ( K ^m I ) ) ) ) |
| 17 | 9 4 10 6 11 16 | pwselbas | |- ( ph -> ( Q ` F ) : ( K ^m I ) --> K ) |
| 18 | 17 8 | ffvelcdmd | |- ( ph -> ( ( Q ` F ) ` A ) e. K ) |