This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function F mapping polynomials p to their evaluation at a given point X is a ring homomorphism. (Contributed by metakunt, 19-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evl1maprhm.q | |- O = ( eval1 ` R ) |
|
| evl1maprhm.p | |- P = ( Poly1 ` R ) |
||
| evl1maprhm.b | |- B = ( Base ` R ) |
||
| evl1maprhm.u | |- U = ( Base ` P ) |
||
| evl1maprhm.r | |- ( ph -> R e. CRing ) |
||
| evl1maprhm.y | |- ( ph -> X e. B ) |
||
| evl1maprhm.f | |- F = ( p e. U |-> ( ( O ` p ) ` X ) ) |
||
| Assertion | evl1maprhm | |- ( ph -> F e. ( P RingHom R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evl1maprhm.q | |- O = ( eval1 ` R ) |
|
| 2 | evl1maprhm.p | |- P = ( Poly1 ` R ) |
|
| 3 | evl1maprhm.b | |- B = ( Base ` R ) |
|
| 4 | evl1maprhm.u | |- U = ( Base ` P ) |
|
| 5 | evl1maprhm.r | |- ( ph -> R e. CRing ) |
|
| 6 | evl1maprhm.y | |- ( ph -> X e. B ) |
|
| 7 | evl1maprhm.f | |- F = ( p e. U |-> ( ( O ` p ) ` X ) ) |
|
| 8 | 7 | a1i | |- ( ph -> F = ( p e. U |-> ( ( O ` p ) ` X ) ) ) |
| 9 | ssidd | |- ( ph -> ( Base ` R ) C_ ( Base ` R ) ) |
|
| 10 | 5 | elexd | |- ( ph -> R e. _V ) |
| 11 | 5 | crngringd | |- ( ph -> R e. Ring ) |
| 12 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 13 | 12 | subrgid | |- ( R e. Ring -> ( Base ` R ) e. ( SubRing ` R ) ) |
| 14 | 11 13 | syl | |- ( ph -> ( Base ` R ) e. ( SubRing ` R ) ) |
| 15 | 14 | elexd | |- ( ph -> ( Base ` R ) e. _V ) |
| 16 | eqid | |- ( R |`s ( Base ` R ) ) = ( R |`s ( Base ` R ) ) |
|
| 17 | 16 12 | ressid2 | |- ( ( ( Base ` R ) C_ ( Base ` R ) /\ R e. _V /\ ( Base ` R ) e. _V ) -> ( R |`s ( Base ` R ) ) = R ) |
| 18 | 9 10 15 17 | syl3anc | |- ( ph -> ( R |`s ( Base ` R ) ) = R ) |
| 19 | eqcom | |- ( ( R |`s ( Base ` R ) ) = R <-> R = ( R |`s ( Base ` R ) ) ) |
|
| 20 | 19 | imbi2i | |- ( ( ph -> ( R |`s ( Base ` R ) ) = R ) <-> ( ph -> R = ( R |`s ( Base ` R ) ) ) ) |
| 21 | 18 20 | mpbi | |- ( ph -> R = ( R |`s ( Base ` R ) ) ) |
| 22 | 21 | fveq2d | |- ( ph -> ( Poly1 ` R ) = ( Poly1 ` ( R |`s ( Base ` R ) ) ) ) |
| 23 | 2 22 | eqtrid | |- ( ph -> P = ( Poly1 ` ( R |`s ( Base ` R ) ) ) ) |
| 24 | 23 | fveq2d | |- ( ph -> ( Base ` P ) = ( Base ` ( Poly1 ` ( R |`s ( Base ` R ) ) ) ) ) |
| 25 | 4 24 | eqtrid | |- ( ph -> U = ( Base ` ( Poly1 ` ( R |`s ( Base ` R ) ) ) ) ) |
| 26 | 1 12 | evl1fval1 | |- O = ( R evalSub1 ( Base ` R ) ) |
| 27 | 26 | a1i | |- ( ph -> O = ( R evalSub1 ( Base ` R ) ) ) |
| 28 | 27 | fveq1d | |- ( ph -> ( O ` p ) = ( ( R evalSub1 ( Base ` R ) ) ` p ) ) |
| 29 | 28 | fveq1d | |- ( ph -> ( ( O ` p ) ` X ) = ( ( ( R evalSub1 ( Base ` R ) ) ` p ) ` X ) ) |
| 30 | 25 29 | mpteq12dv | |- ( ph -> ( p e. U |-> ( ( O ` p ) ` X ) ) = ( p e. ( Base ` ( Poly1 ` ( R |`s ( Base ` R ) ) ) ) |-> ( ( ( R evalSub1 ( Base ` R ) ) ` p ) ` X ) ) ) |
| 31 | eqid | |- ( R evalSub1 ( Base ` R ) ) = ( R evalSub1 ( Base ` R ) ) |
|
| 32 | eqid | |- ( Poly1 ` ( R |`s ( Base ` R ) ) ) = ( Poly1 ` ( R |`s ( Base ` R ) ) ) |
|
| 33 | eqid | |- ( Base ` ( Poly1 ` ( R |`s ( Base ` R ) ) ) ) = ( Base ` ( Poly1 ` ( R |`s ( Base ` R ) ) ) ) |
|
| 34 | 6 3 | eleqtrdi | |- ( ph -> X e. ( Base ` R ) ) |
| 35 | eqid | |- ( p e. ( Base ` ( Poly1 ` ( R |`s ( Base ` R ) ) ) ) |-> ( ( ( R evalSub1 ( Base ` R ) ) ` p ) ` X ) ) = ( p e. ( Base ` ( Poly1 ` ( R |`s ( Base ` R ) ) ) ) |-> ( ( ( R evalSub1 ( Base ` R ) ) ` p ) ` X ) ) |
|
| 36 | 31 32 12 33 5 14 34 35 | evls1maprhm | |- ( ph -> ( p e. ( Base ` ( Poly1 ` ( R |`s ( Base ` R ) ) ) ) |-> ( ( ( R evalSub1 ( Base ` R ) ) ` p ) ` X ) ) e. ( ( Poly1 ` ( R |`s ( Base ` R ) ) ) RingHom R ) ) |
| 37 | 30 36 | eqeltrd | |- ( ph -> ( p e. U |-> ( ( O ` p ) ` X ) ) e. ( ( Poly1 ` ( R |`s ( Base ` R ) ) ) RingHom R ) ) |
| 38 | 2 | a1i | |- ( ph -> P = ( Poly1 ` R ) ) |
| 39 | 18 | eqcomd | |- ( ph -> R = ( R |`s ( Base ` R ) ) ) |
| 40 | 39 | fveq2d | |- ( ph -> ( Poly1 ` R ) = ( Poly1 ` ( R |`s ( Base ` R ) ) ) ) |
| 41 | 38 40 | eqtr2d | |- ( ph -> ( Poly1 ` ( R |`s ( Base ` R ) ) ) = P ) |
| 42 | 41 | oveq1d | |- ( ph -> ( ( Poly1 ` ( R |`s ( Base ` R ) ) ) RingHom R ) = ( P RingHom R ) ) |
| 43 | 37 42 | eleqtrd | |- ( ph -> ( p e. U |-> ( ( O ` p ) ` X ) ) e. ( P RingHom R ) ) |
| 44 | 8 43 | eqeltrd | |- ( ph -> F e. ( P RingHom R ) ) |