This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A number which is twice an integer increased by 1 is odd. (Contributed by AV, 16-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2tp1odd | |- ( ( A e. ZZ /\ B = ( ( 2 x. A ) + 1 ) ) -> -. 2 || B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | |- ( A e. ZZ -> A e. ZZ ) |
|
| 2 | oveq2 | |- ( k = A -> ( 2 x. k ) = ( 2 x. A ) ) |
|
| 3 | 2 | oveq1d | |- ( k = A -> ( ( 2 x. k ) + 1 ) = ( ( 2 x. A ) + 1 ) ) |
| 4 | 3 | eqeq1d | |- ( k = A -> ( ( ( 2 x. k ) + 1 ) = ( ( 2 x. A ) + 1 ) <-> ( ( 2 x. A ) + 1 ) = ( ( 2 x. A ) + 1 ) ) ) |
| 5 | 4 | adantl | |- ( ( A e. ZZ /\ k = A ) -> ( ( ( 2 x. k ) + 1 ) = ( ( 2 x. A ) + 1 ) <-> ( ( 2 x. A ) + 1 ) = ( ( 2 x. A ) + 1 ) ) ) |
| 6 | eqidd | |- ( A e. ZZ -> ( ( 2 x. A ) + 1 ) = ( ( 2 x. A ) + 1 ) ) |
|
| 7 | 1 5 6 | rspcedvd | |- ( A e. ZZ -> E. k e. ZZ ( ( 2 x. k ) + 1 ) = ( ( 2 x. A ) + 1 ) ) |
| 8 | 2z | |- 2 e. ZZ |
|
| 9 | 8 | a1i | |- ( A e. ZZ -> 2 e. ZZ ) |
| 10 | 9 1 | zmulcld | |- ( A e. ZZ -> ( 2 x. A ) e. ZZ ) |
| 11 | 10 | peano2zd | |- ( A e. ZZ -> ( ( 2 x. A ) + 1 ) e. ZZ ) |
| 12 | odd2np1 | |- ( ( ( 2 x. A ) + 1 ) e. ZZ -> ( -. 2 || ( ( 2 x. A ) + 1 ) <-> E. k e. ZZ ( ( 2 x. k ) + 1 ) = ( ( 2 x. A ) + 1 ) ) ) |
|
| 13 | 11 12 | syl | |- ( A e. ZZ -> ( -. 2 || ( ( 2 x. A ) + 1 ) <-> E. k e. ZZ ( ( 2 x. k ) + 1 ) = ( ( 2 x. A ) + 1 ) ) ) |
| 14 | 7 13 | mpbird | |- ( A e. ZZ -> -. 2 || ( ( 2 x. A ) + 1 ) ) |
| 15 | 14 | adantr | |- ( ( A e. ZZ /\ B = ( ( 2 x. A ) + 1 ) ) -> -. 2 || ( ( 2 x. A ) + 1 ) ) |
| 16 | breq2 | |- ( B = ( ( 2 x. A ) + 1 ) -> ( 2 || B <-> 2 || ( ( 2 x. A ) + 1 ) ) ) |
|
| 17 | 16 | adantl | |- ( ( A e. ZZ /\ B = ( ( 2 x. A ) + 1 ) ) -> ( 2 || B <-> 2 || ( ( 2 x. A ) + 1 ) ) ) |
| 18 | 15 17 | mtbird | |- ( ( A e. ZZ /\ B = ( ( 2 x. A ) + 1 ) ) -> -. 2 || B ) |