This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The endpoints of a walk are vertices. (Contributed by AV, 31-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | wlkpvtx.v | |- V = ( Vtx ` G ) |
|
| Assertion | wlkepvtx | |- ( F ( Walks ` G ) P -> ( ( P ` 0 ) e. V /\ ( P ` ( # ` F ) ) e. V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlkpvtx.v | |- V = ( Vtx ` G ) |
|
| 2 | 1 | wlkp | |- ( F ( Walks ` G ) P -> P : ( 0 ... ( # ` F ) ) --> V ) |
| 3 | wlkcl | |- ( F ( Walks ` G ) P -> ( # ` F ) e. NN0 ) |
|
| 4 | 0elfz | |- ( ( # ` F ) e. NN0 -> 0 e. ( 0 ... ( # ` F ) ) ) |
|
| 5 | ffvelcdm | |- ( ( P : ( 0 ... ( # ` F ) ) --> V /\ 0 e. ( 0 ... ( # ` F ) ) ) -> ( P ` 0 ) e. V ) |
|
| 6 | 4 5 | sylan2 | |- ( ( P : ( 0 ... ( # ` F ) ) --> V /\ ( # ` F ) e. NN0 ) -> ( P ` 0 ) e. V ) |
| 7 | nn0fz0 | |- ( ( # ` F ) e. NN0 <-> ( # ` F ) e. ( 0 ... ( # ` F ) ) ) |
|
| 8 | ffvelcdm | |- ( ( P : ( 0 ... ( # ` F ) ) --> V /\ ( # ` F ) e. ( 0 ... ( # ` F ) ) ) -> ( P ` ( # ` F ) ) e. V ) |
|
| 9 | 7 8 | sylan2b | |- ( ( P : ( 0 ... ( # ` F ) ) --> V /\ ( # ` F ) e. NN0 ) -> ( P ` ( # ` F ) ) e. V ) |
| 10 | 6 9 | jca | |- ( ( P : ( 0 ... ( # ` F ) ) --> V /\ ( # ` F ) e. NN0 ) -> ( ( P ` 0 ) e. V /\ ( P ` ( # ` F ) ) e. V ) ) |
| 11 | 2 3 10 | syl2anc | |- ( F ( Walks ` G ) P -> ( ( P ` 0 ) e. V /\ ( P ` ( # ` F ) ) e. V ) ) |