This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If an element of a quotient set contains a given element, it is equal to the equivalence class of the element. (Contributed by Mario Carneiro, 12-Aug-2015) (Revised by Peter Mazsa, 28-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eqvrelqsel | |- ( ( EqvRel R /\ B e. ( A /. R ) /\ C e. B ) -> B = [ C ] R ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( A /. R ) = ( A /. R ) |
|
| 2 | eleq2 | |- ( [ x ] R = B -> ( C e. [ x ] R <-> C e. B ) ) |
|
| 3 | eqeq1 | |- ( [ x ] R = B -> ( [ x ] R = [ C ] R <-> B = [ C ] R ) ) |
|
| 4 | 2 3 | imbi12d | |- ( [ x ] R = B -> ( ( C e. [ x ] R -> [ x ] R = [ C ] R ) <-> ( C e. B -> B = [ C ] R ) ) ) |
| 5 | elecALTV | |- ( ( x e. _V /\ C e. [ x ] R ) -> ( C e. [ x ] R <-> x R C ) ) |
|
| 6 | 5 | el2v1 | |- ( C e. [ x ] R -> ( C e. [ x ] R <-> x R C ) ) |
| 7 | 6 | ibi | |- ( C e. [ x ] R -> x R C ) |
| 8 | simpll | |- ( ( ( EqvRel R /\ x e. A ) /\ x R C ) -> EqvRel R ) |
|
| 9 | simpr | |- ( ( ( EqvRel R /\ x e. A ) /\ x R C ) -> x R C ) |
|
| 10 | 8 9 | eqvrelthi | |- ( ( ( EqvRel R /\ x e. A ) /\ x R C ) -> [ x ] R = [ C ] R ) |
| 11 | 10 | ex | |- ( ( EqvRel R /\ x e. A ) -> ( x R C -> [ x ] R = [ C ] R ) ) |
| 12 | 7 11 | syl5 | |- ( ( EqvRel R /\ x e. A ) -> ( C e. [ x ] R -> [ x ] R = [ C ] R ) ) |
| 13 | 1 4 12 | ectocld | |- ( ( EqvRel R /\ B e. ( A /. R ) ) -> ( C e. B -> B = [ C ] R ) ) |
| 14 | 13 | 3impia | |- ( ( EqvRel R /\ B e. ( A /. R ) /\ C e. B ) -> B = [ C ] R ) |