This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction from extensionality principle for relations. (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqbrrdv.1 | |- ( ph -> Rel A ) |
|
| eqbrrdv.2 | |- ( ph -> Rel B ) |
||
| eqbrrdv.3 | |- ( ph -> ( x A y <-> x B y ) ) |
||
| Assertion | eqbrrdv | |- ( ph -> A = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqbrrdv.1 | |- ( ph -> Rel A ) |
|
| 2 | eqbrrdv.2 | |- ( ph -> Rel B ) |
|
| 3 | eqbrrdv.3 | |- ( ph -> ( x A y <-> x B y ) ) |
|
| 4 | df-br | |- ( x A y <-> <. x , y >. e. A ) |
|
| 5 | df-br | |- ( x B y <-> <. x , y >. e. B ) |
|
| 6 | 3 4 5 | 3bitr3g | |- ( ph -> ( <. x , y >. e. A <-> <. x , y >. e. B ) ) |
| 7 | 6 | alrimivv | |- ( ph -> A. x A. y ( <. x , y >. e. A <-> <. x , y >. e. B ) ) |
| 8 | eqrel | |- ( ( Rel A /\ Rel B ) -> ( A = B <-> A. x A. y ( <. x , y >. e. A <-> <. x , y >. e. B ) ) ) |
|
| 9 | 1 2 8 | syl2anc | |- ( ph -> ( A = B <-> A. x A. y ( <. x , y >. e. A <-> <. x , y >. e. B ) ) ) |
| 10 | 7 9 | mpbird | |- ( ph -> A = B ) |