This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of epweon , shorter but requiring ax-un . (Contributed by NM, 1-Nov-2003) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | epweonALT | |- _E We On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onfr | |- _E Fr On |
|
| 2 | eloni | |- ( x e. On -> Ord x ) |
|
| 3 | eloni | |- ( y e. On -> Ord y ) |
|
| 4 | ordtri3or | |- ( ( Ord x /\ Ord y ) -> ( x e. y \/ x = y \/ y e. x ) ) |
|
| 5 | epel | |- ( x _E y <-> x e. y ) |
|
| 6 | biid | |- ( x = y <-> x = y ) |
|
| 7 | epel | |- ( y _E x <-> y e. x ) |
|
| 8 | 5 6 7 | 3orbi123i | |- ( ( x _E y \/ x = y \/ y _E x ) <-> ( x e. y \/ x = y \/ y e. x ) ) |
| 9 | 4 8 | sylibr | |- ( ( Ord x /\ Ord y ) -> ( x _E y \/ x = y \/ y _E x ) ) |
| 10 | 2 3 9 | syl2an | |- ( ( x e. On /\ y e. On ) -> ( x _E y \/ x = y \/ y _E x ) ) |
| 11 | 10 | rgen2 | |- A. x e. On A. y e. On ( x _E y \/ x = y \/ y _E x ) |
| 12 | dfwe2 | |- ( _E We On <-> ( _E Fr On /\ A. x e. On A. y e. On ( x _E y \/ x = y \/ y _E x ) ) ) |
|
| 13 | 1 11 12 | mpbir2an | |- _E We On |