This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the strict partial order predicate. Definition of Enderton p. 168. The expression R Po A means R is a partial order on A . For example, < Po RR is true, while <_ Po RR is false ( ex-po ). (Contributed by NM, 16-Mar-1997)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-po | |- ( R Po A <-> A. x e. A A. y e. A A. z e. A ( -. x R x /\ ( ( x R y /\ y R z ) -> x R z ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cR | |- R |
|
| 1 | cA | |- A |
|
| 2 | 1 0 | wpo | |- R Po A |
| 3 | vx | |- x |
|
| 4 | vy | |- y |
|
| 5 | vz | |- z |
|
| 6 | 3 | cv | |- x |
| 7 | 6 6 0 | wbr | |- x R x |
| 8 | 7 | wn | |- -. x R x |
| 9 | 4 | cv | |- y |
| 10 | 6 9 0 | wbr | |- x R y |
| 11 | 5 | cv | |- z |
| 12 | 9 11 0 | wbr | |- y R z |
| 13 | 10 12 | wa | |- ( x R y /\ y R z ) |
| 14 | 6 11 0 | wbr | |- x R z |
| 15 | 13 14 | wi | |- ( ( x R y /\ y R z ) -> x R z ) |
| 16 | 8 15 | wa | |- ( -. x R x /\ ( ( x R y /\ y R z ) -> x R z ) ) |
| 17 | 16 5 1 | wral | |- A. z e. A ( -. x R x /\ ( ( x R y /\ y R z ) -> x R z ) ) |
| 18 | 17 4 1 | wral | |- A. y e. A A. z e. A ( -. x R x /\ ( ( x R y /\ y R z ) -> x R z ) ) |
| 19 | 18 3 1 | wral | |- A. x e. A A. y e. A A. z e. A ( -. x R x /\ ( ( x R y /\ y R z ) -> x R z ) ) |
| 20 | 2 19 | wb | |- ( R Po A <-> A. x e. A A. y e. A A. z e. A ( -. x R x /\ ( ( x R y /\ y R z ) -> x R z ) ) ) |