This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of an epimorphism. (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isepi.b | |- B = ( Base ` C ) |
|
| isepi.h | |- H = ( Hom ` C ) |
||
| isepi.o | |- .x. = ( comp ` C ) |
||
| isepi.e | |- E = ( Epi ` C ) |
||
| isepi.c | |- ( ph -> C e. Cat ) |
||
| isepi.x | |- ( ph -> X e. B ) |
||
| isepi.y | |- ( ph -> Y e. B ) |
||
| epii.z | |- ( ph -> Z e. B ) |
||
| epii.f | |- ( ph -> F e. ( X E Y ) ) |
||
| epii.g | |- ( ph -> G e. ( Y H Z ) ) |
||
| epii.k | |- ( ph -> K e. ( Y H Z ) ) |
||
| Assertion | epii | |- ( ph -> ( ( G ( <. X , Y >. .x. Z ) F ) = ( K ( <. X , Y >. .x. Z ) F ) <-> G = K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isepi.b | |- B = ( Base ` C ) |
|
| 2 | isepi.h | |- H = ( Hom ` C ) |
|
| 3 | isepi.o | |- .x. = ( comp ` C ) |
|
| 4 | isepi.e | |- E = ( Epi ` C ) |
|
| 5 | isepi.c | |- ( ph -> C e. Cat ) |
|
| 6 | isepi.x | |- ( ph -> X e. B ) |
|
| 7 | isepi.y | |- ( ph -> Y e. B ) |
|
| 8 | epii.z | |- ( ph -> Z e. B ) |
|
| 9 | epii.f | |- ( ph -> F e. ( X E Y ) ) |
|
| 10 | epii.g | |- ( ph -> G e. ( Y H Z ) ) |
|
| 11 | epii.k | |- ( ph -> K e. ( Y H Z ) ) |
|
| 12 | eqid | |- ( oppCat ` C ) = ( oppCat ` C ) |
|
| 13 | 1 3 12 8 7 6 | oppcco | |- ( ph -> ( F ( <. Z , Y >. ( comp ` ( oppCat ` C ) ) X ) G ) = ( G ( <. X , Y >. .x. Z ) F ) ) |
| 14 | 1 3 12 8 7 6 | oppcco | |- ( ph -> ( F ( <. Z , Y >. ( comp ` ( oppCat ` C ) ) X ) K ) = ( K ( <. X , Y >. .x. Z ) F ) ) |
| 15 | 13 14 | eqeq12d | |- ( ph -> ( ( F ( <. Z , Y >. ( comp ` ( oppCat ` C ) ) X ) G ) = ( F ( <. Z , Y >. ( comp ` ( oppCat ` C ) ) X ) K ) <-> ( G ( <. X , Y >. .x. Z ) F ) = ( K ( <. X , Y >. .x. Z ) F ) ) ) |
| 16 | 12 1 | oppcbas | |- B = ( Base ` ( oppCat ` C ) ) |
| 17 | eqid | |- ( Hom ` ( oppCat ` C ) ) = ( Hom ` ( oppCat ` C ) ) |
|
| 18 | eqid | |- ( comp ` ( oppCat ` C ) ) = ( comp ` ( oppCat ` C ) ) |
|
| 19 | eqid | |- ( Mono ` ( oppCat ` C ) ) = ( Mono ` ( oppCat ` C ) ) |
|
| 20 | 12 | oppccat | |- ( C e. Cat -> ( oppCat ` C ) e. Cat ) |
| 21 | 5 20 | syl | |- ( ph -> ( oppCat ` C ) e. Cat ) |
| 22 | 12 5 19 4 | oppcmon | |- ( ph -> ( Y ( Mono ` ( oppCat ` C ) ) X ) = ( X E Y ) ) |
| 23 | 9 22 | eleqtrrd | |- ( ph -> F e. ( Y ( Mono ` ( oppCat ` C ) ) X ) ) |
| 24 | 2 12 | oppchom | |- ( Z ( Hom ` ( oppCat ` C ) ) Y ) = ( Y H Z ) |
| 25 | 10 24 | eleqtrrdi | |- ( ph -> G e. ( Z ( Hom ` ( oppCat ` C ) ) Y ) ) |
| 26 | 11 24 | eleqtrrdi | |- ( ph -> K e. ( Z ( Hom ` ( oppCat ` C ) ) Y ) ) |
| 27 | 16 17 18 19 21 7 6 8 23 25 26 | moni | |- ( ph -> ( ( F ( <. Z , Y >. ( comp ` ( oppCat ` C ) ) X ) G ) = ( F ( <. Z , Y >. ( comp ` ( oppCat ` C ) ) X ) K ) <-> G = K ) ) |
| 28 | 15 27 | bitr3d | |- ( ph -> ( ( G ( <. X , Y >. .x. Z ) F ) = ( K ( <. X , Y >. .x. Z ) F ) <-> G = K ) ) |