This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of an epimorphism. (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isepi.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| isepi.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| isepi.o | ⊢ · = ( comp ‘ 𝐶 ) | ||
| isepi.e | ⊢ 𝐸 = ( Epi ‘ 𝐶 ) | ||
| isepi.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| isepi.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| isepi.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| epii.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | ||
| epii.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐸 𝑌 ) ) | ||
| epii.g | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝑌 𝐻 𝑍 ) ) | ||
| epii.k | ⊢ ( 𝜑 → 𝐾 ∈ ( 𝑌 𝐻 𝑍 ) ) | ||
| Assertion | epii | ⊢ ( 𝜑 → ( ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) = ( 𝐾 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ↔ 𝐺 = 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isepi.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | isepi.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 3 | isepi.o | ⊢ · = ( comp ‘ 𝐶 ) | |
| 4 | isepi.e | ⊢ 𝐸 = ( Epi ‘ 𝐶 ) | |
| 5 | isepi.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 6 | isepi.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 7 | isepi.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 8 | epii.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | |
| 9 | epii.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐸 𝑌 ) ) | |
| 10 | epii.g | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝑌 𝐻 𝑍 ) ) | |
| 11 | epii.k | ⊢ ( 𝜑 → 𝐾 ∈ ( 𝑌 𝐻 𝑍 ) ) | |
| 12 | eqid | ⊢ ( oppCat ‘ 𝐶 ) = ( oppCat ‘ 𝐶 ) | |
| 13 | 1 3 12 8 7 6 | oppcco | ⊢ ( 𝜑 → ( 𝐹 ( 〈 𝑍 , 𝑌 〉 ( comp ‘ ( oppCat ‘ 𝐶 ) ) 𝑋 ) 𝐺 ) = ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ) |
| 14 | 1 3 12 8 7 6 | oppcco | ⊢ ( 𝜑 → ( 𝐹 ( 〈 𝑍 , 𝑌 〉 ( comp ‘ ( oppCat ‘ 𝐶 ) ) 𝑋 ) 𝐾 ) = ( 𝐾 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ) |
| 15 | 13 14 | eqeq12d | ⊢ ( 𝜑 → ( ( 𝐹 ( 〈 𝑍 , 𝑌 〉 ( comp ‘ ( oppCat ‘ 𝐶 ) ) 𝑋 ) 𝐺 ) = ( 𝐹 ( 〈 𝑍 , 𝑌 〉 ( comp ‘ ( oppCat ‘ 𝐶 ) ) 𝑋 ) 𝐾 ) ↔ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) = ( 𝐾 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ) ) |
| 16 | 12 1 | oppcbas | ⊢ 𝐵 = ( Base ‘ ( oppCat ‘ 𝐶 ) ) |
| 17 | eqid | ⊢ ( Hom ‘ ( oppCat ‘ 𝐶 ) ) = ( Hom ‘ ( oppCat ‘ 𝐶 ) ) | |
| 18 | eqid | ⊢ ( comp ‘ ( oppCat ‘ 𝐶 ) ) = ( comp ‘ ( oppCat ‘ 𝐶 ) ) | |
| 19 | eqid | ⊢ ( Mono ‘ ( oppCat ‘ 𝐶 ) ) = ( Mono ‘ ( oppCat ‘ 𝐶 ) ) | |
| 20 | 12 | oppccat | ⊢ ( 𝐶 ∈ Cat → ( oppCat ‘ 𝐶 ) ∈ Cat ) |
| 21 | 5 20 | syl | ⊢ ( 𝜑 → ( oppCat ‘ 𝐶 ) ∈ Cat ) |
| 22 | 12 5 19 4 | oppcmon | ⊢ ( 𝜑 → ( 𝑌 ( Mono ‘ ( oppCat ‘ 𝐶 ) ) 𝑋 ) = ( 𝑋 𝐸 𝑌 ) ) |
| 23 | 9 22 | eleqtrrd | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑌 ( Mono ‘ ( oppCat ‘ 𝐶 ) ) 𝑋 ) ) |
| 24 | 2 12 | oppchom | ⊢ ( 𝑍 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑌 ) = ( 𝑌 𝐻 𝑍 ) |
| 25 | 10 24 | eleqtrrdi | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝑍 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑌 ) ) |
| 26 | 11 24 | eleqtrrdi | ⊢ ( 𝜑 → 𝐾 ∈ ( 𝑍 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑌 ) ) |
| 27 | 16 17 18 19 21 7 6 8 23 25 26 | moni | ⊢ ( 𝜑 → ( ( 𝐹 ( 〈 𝑍 , 𝑌 〉 ( comp ‘ ( oppCat ‘ 𝐶 ) ) 𝑋 ) 𝐺 ) = ( 𝐹 ( 〈 𝑍 , 𝑌 〉 ( comp ‘ ( oppCat ‘ 𝐶 ) ) 𝑋 ) 𝐾 ) ↔ 𝐺 = 𝐾 ) ) |
| 28 | 15 27 | bitr3d | ⊢ ( 𝜑 → ( ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) = ( 𝐾 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ↔ 𝐺 = 𝐾 ) ) |