This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of a Ia-finite set. (Contributed by Stefan O'Rear, 16-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fin1ai | |- ( ( A e. Fin1a /\ X C_ A ) -> ( X e. Fin \/ ( A \ X ) e. Fin ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 | |- ( x = X -> ( x e. Fin <-> X e. Fin ) ) |
|
| 2 | difeq2 | |- ( x = X -> ( A \ x ) = ( A \ X ) ) |
|
| 3 | 2 | eleq1d | |- ( x = X -> ( ( A \ x ) e. Fin <-> ( A \ X ) e. Fin ) ) |
| 4 | 1 3 | orbi12d | |- ( x = X -> ( ( x e. Fin \/ ( A \ x ) e. Fin ) <-> ( X e. Fin \/ ( A \ X ) e. Fin ) ) ) |
| 5 | isfin1a | |- ( A e. Fin1a -> ( A e. Fin1a <-> A. x e. ~P A ( x e. Fin \/ ( A \ x ) e. Fin ) ) ) |
|
| 6 | 5 | ibi | |- ( A e. Fin1a -> A. x e. ~P A ( x e. Fin \/ ( A \ x ) e. Fin ) ) |
| 7 | 6 | adantr | |- ( ( A e. Fin1a /\ X C_ A ) -> A. x e. ~P A ( x e. Fin \/ ( A \ x ) e. Fin ) ) |
| 8 | elpw2g | |- ( A e. Fin1a -> ( X e. ~P A <-> X C_ A ) ) |
|
| 9 | 8 | biimpar | |- ( ( A e. Fin1a /\ X C_ A ) -> X e. ~P A ) |
| 10 | 4 7 9 | rspcdva | |- ( ( A e. Fin1a /\ X C_ A ) -> ( X e. Fin \/ ( A \ X ) e. Fin ) ) |