This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Definition of a Ia-finite set. (Contributed by Stefan O'Rear, 16-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isfin1a | |- ( A e. V -> ( A e. Fin1a <-> A. y e. ~P A ( y e. Fin \/ ( A \ y ) e. Fin ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pweq | |- ( x = A -> ~P x = ~P A ) |
|
| 2 | difeq1 | |- ( x = A -> ( x \ y ) = ( A \ y ) ) |
|
| 3 | 2 | eleq1d | |- ( x = A -> ( ( x \ y ) e. Fin <-> ( A \ y ) e. Fin ) ) |
| 4 | 3 | orbi2d | |- ( x = A -> ( ( y e. Fin \/ ( x \ y ) e. Fin ) <-> ( y e. Fin \/ ( A \ y ) e. Fin ) ) ) |
| 5 | 1 4 | raleqbidv | |- ( x = A -> ( A. y e. ~P x ( y e. Fin \/ ( x \ y ) e. Fin ) <-> A. y e. ~P A ( y e. Fin \/ ( A \ y ) e. Fin ) ) ) |
| 6 | df-fin1a | |- Fin1a = { x | A. y e. ~P x ( y e. Fin \/ ( x \ y ) e. Fin ) } |
|
| 7 | 5 6 | elab2g | |- ( A e. V -> ( A e. Fin1a <-> A. y e. ~P A ( y e. Fin \/ ( A \ y ) e. Fin ) ) ) |