This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A criterion for determining whether one topology is finer than another. Lemma 2.2 of Munkres p. 80 using abbreviations. (Contributed by NM, 20-Jul-2006) (Proof shortened by Mario Carneiro, 2-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tgss3 | |- ( ( B e. V /\ C e. W ) -> ( ( topGen ` B ) C_ ( topGen ` C ) <-> B C_ ( topGen ` C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bastg | |- ( B e. V -> B C_ ( topGen ` B ) ) |
|
| 2 | 1 | adantr | |- ( ( B e. V /\ C e. W ) -> B C_ ( topGen ` B ) ) |
| 3 | sstr2 | |- ( B C_ ( topGen ` B ) -> ( ( topGen ` B ) C_ ( topGen ` C ) -> B C_ ( topGen ` C ) ) ) |
|
| 4 | 2 3 | syl | |- ( ( B e. V /\ C e. W ) -> ( ( topGen ` B ) C_ ( topGen ` C ) -> B C_ ( topGen ` C ) ) ) |
| 5 | fvex | |- ( topGen ` C ) e. _V |
|
| 6 | tgss | |- ( ( ( topGen ` C ) e. _V /\ B C_ ( topGen ` C ) ) -> ( topGen ` B ) C_ ( topGen ` ( topGen ` C ) ) ) |
|
| 7 | 5 6 | mpan | |- ( B C_ ( topGen ` C ) -> ( topGen ` B ) C_ ( topGen ` ( topGen ` C ) ) ) |
| 8 | tgidm | |- ( C e. W -> ( topGen ` ( topGen ` C ) ) = ( topGen ` C ) ) |
|
| 9 | 8 | adantl | |- ( ( B e. V /\ C e. W ) -> ( topGen ` ( topGen ` C ) ) = ( topGen ` C ) ) |
| 10 | 9 | sseq2d | |- ( ( B e. V /\ C e. W ) -> ( ( topGen ` B ) C_ ( topGen ` ( topGen ` C ) ) <-> ( topGen ` B ) C_ ( topGen ` C ) ) ) |
| 11 | 7 10 | imbitrid | |- ( ( B e. V /\ C e. W ) -> ( B C_ ( topGen ` C ) -> ( topGen ` B ) C_ ( topGen ` C ) ) ) |
| 12 | 4 11 | impbid | |- ( ( B e. V /\ C e. W ) -> ( ( topGen ` B ) C_ ( topGen ` C ) <-> B C_ ( topGen ` C ) ) ) |