This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Implications for the value of an operation, defined by the maps-to notation with a class abstraction as a result, having an element. Here, the base set of the class abstraction depends on the first operand. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker elovmporab1w when possible. (Contributed by Alexander van der Vekens, 15-Jul-2018) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elovmporab1.o | |- O = ( x e. _V , y e. _V |-> { z e. [_ x / m ]_ M | ph } ) |
|
| elovmporab1.v | |- ( ( X e. _V /\ Y e. _V ) -> [_ X / m ]_ M e. _V ) |
||
| Assertion | elovmporab1 | |- ( Z e. ( X O Y ) -> ( X e. _V /\ Y e. _V /\ Z e. [_ X / m ]_ M ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elovmporab1.o | |- O = ( x e. _V , y e. _V |-> { z e. [_ x / m ]_ M | ph } ) |
|
| 2 | elovmporab1.v | |- ( ( X e. _V /\ Y e. _V ) -> [_ X / m ]_ M e. _V ) |
|
| 3 | 1 | elmpocl | |- ( Z e. ( X O Y ) -> ( X e. _V /\ Y e. _V ) ) |
| 4 | 1 | a1i | |- ( ( X e. _V /\ Y e. _V ) -> O = ( x e. _V , y e. _V |-> { z e. [_ x / m ]_ M | ph } ) ) |
| 5 | csbeq1 | |- ( x = X -> [_ x / m ]_ M = [_ X / m ]_ M ) |
|
| 6 | 5 | ad2antrl | |- ( ( ( X e. _V /\ Y e. _V ) /\ ( x = X /\ y = Y ) ) -> [_ x / m ]_ M = [_ X / m ]_ M ) |
| 7 | sbceq1a | |- ( y = Y -> ( ph <-> [. Y / y ]. ph ) ) |
|
| 8 | sbceq1a | |- ( x = X -> ( [. Y / y ]. ph <-> [. X / x ]. [. Y / y ]. ph ) ) |
|
| 9 | 7 8 | sylan9bbr | |- ( ( x = X /\ y = Y ) -> ( ph <-> [. X / x ]. [. Y / y ]. ph ) ) |
| 10 | 9 | adantl | |- ( ( ( X e. _V /\ Y e. _V ) /\ ( x = X /\ y = Y ) ) -> ( ph <-> [. X / x ]. [. Y / y ]. ph ) ) |
| 11 | 6 10 | rabeqbidv | |- ( ( ( X e. _V /\ Y e. _V ) /\ ( x = X /\ y = Y ) ) -> { z e. [_ x / m ]_ M | ph } = { z e. [_ X / m ]_ M | [. X / x ]. [. Y / y ]. ph } ) |
| 12 | eqidd | |- ( ( ( X e. _V /\ Y e. _V ) /\ x = X ) -> _V = _V ) |
|
| 13 | simpl | |- ( ( X e. _V /\ Y e. _V ) -> X e. _V ) |
|
| 14 | simpr | |- ( ( X e. _V /\ Y e. _V ) -> Y e. _V ) |
|
| 15 | rabexg | |- ( [_ X / m ]_ M e. _V -> { z e. [_ X / m ]_ M | [. X / x ]. [. Y / y ]. ph } e. _V ) |
|
| 16 | 2 15 | syl | |- ( ( X e. _V /\ Y e. _V ) -> { z e. [_ X / m ]_ M | [. X / x ]. [. Y / y ]. ph } e. _V ) |
| 17 | nfcv | |- F/_ x X |
|
| 18 | 17 | nfel1 | |- F/ x X e. _V |
| 19 | nfcv | |- F/_ x Y |
|
| 20 | 19 | nfel1 | |- F/ x Y e. _V |
| 21 | 18 20 | nfan | |- F/ x ( X e. _V /\ Y e. _V ) |
| 22 | nfcv | |- F/_ y X |
|
| 23 | 22 | nfel1 | |- F/ y X e. _V |
| 24 | nfcv | |- F/_ y Y |
|
| 25 | 24 | nfel1 | |- F/ y Y e. _V |
| 26 | 23 25 | nfan | |- F/ y ( X e. _V /\ Y e. _V ) |
| 27 | nfsbc1v | |- F/ x [. X / x ]. [. Y / y ]. ph |
|
| 28 | nfcv | |- F/_ x M |
|
| 29 | 17 28 | nfcsb | |- F/_ x [_ X / m ]_ M |
| 30 | 27 29 | nfrab | |- F/_ x { z e. [_ X / m ]_ M | [. X / x ]. [. Y / y ]. ph } |
| 31 | nfsbc1v | |- F/ y [. Y / y ]. ph |
|
| 32 | 22 31 | nfsbc | |- F/ y [. X / x ]. [. Y / y ]. ph |
| 33 | nfcv | |- F/_ y M |
|
| 34 | 22 33 | nfcsb | |- F/_ y [_ X / m ]_ M |
| 35 | 32 34 | nfrab | |- F/_ y { z e. [_ X / m ]_ M | [. X / x ]. [. Y / y ]. ph } |
| 36 | 4 11 12 13 14 16 21 26 22 19 30 35 | ovmpodxf | |- ( ( X e. _V /\ Y e. _V ) -> ( X O Y ) = { z e. [_ X / m ]_ M | [. X / x ]. [. Y / y ]. ph } ) |
| 37 | 36 | eleq2d | |- ( ( X e. _V /\ Y e. _V ) -> ( Z e. ( X O Y ) <-> Z e. { z e. [_ X / m ]_ M | [. X / x ]. [. Y / y ]. ph } ) ) |
| 38 | df-3an | |- ( ( X e. _V /\ Y e. _V /\ Z e. [_ X / m ]_ M ) <-> ( ( X e. _V /\ Y e. _V ) /\ Z e. [_ X / m ]_ M ) ) |
|
| 39 | 38 | simplbi2com | |- ( Z e. [_ X / m ]_ M -> ( ( X e. _V /\ Y e. _V ) -> ( X e. _V /\ Y e. _V /\ Z e. [_ X / m ]_ M ) ) ) |
| 40 | elrabi | |- ( Z e. { z e. [_ X / m ]_ M | [. X / x ]. [. Y / y ]. ph } -> Z e. [_ X / m ]_ M ) |
|
| 41 | 39 40 | syl11 | |- ( ( X e. _V /\ Y e. _V ) -> ( Z e. { z e. [_ X / m ]_ M | [. X / x ]. [. Y / y ]. ph } -> ( X e. _V /\ Y e. _V /\ Z e. [_ X / m ]_ M ) ) ) |
| 42 | 37 41 | sylbid | |- ( ( X e. _V /\ Y e. _V ) -> ( Z e. ( X O Y ) -> ( X e. _V /\ Y e. _V /\ Z e. [_ X / m ]_ M ) ) ) |
| 43 | 3 42 | mpcom | |- ( Z e. ( X O Y ) -> ( X e. _V /\ Y e. _V /\ Z e. [_ X / m ]_ M ) ) |