This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Implications for the value of an operation, defined by the maps-to notation with a class abstraction as a result, having an element. (Contributed by Alexander van der Vekens, 15-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elovmporab.o | |- O = ( x e. _V , y e. _V |-> { z e. M | ph } ) |
|
| elovmporab.v | |- ( ( X e. _V /\ Y e. _V ) -> M e. _V ) |
||
| Assertion | elovmporab | |- ( Z e. ( X O Y ) -> ( X e. _V /\ Y e. _V /\ Z e. M ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elovmporab.o | |- O = ( x e. _V , y e. _V |-> { z e. M | ph } ) |
|
| 2 | elovmporab.v | |- ( ( X e. _V /\ Y e. _V ) -> M e. _V ) |
|
| 3 | 1 | elmpocl | |- ( Z e. ( X O Y ) -> ( X e. _V /\ Y e. _V ) ) |
| 4 | 1 | a1i | |- ( ( X e. _V /\ Y e. _V ) -> O = ( x e. _V , y e. _V |-> { z e. M | ph } ) ) |
| 5 | sbceq1a | |- ( y = Y -> ( ph <-> [. Y / y ]. ph ) ) |
|
| 6 | sbceq1a | |- ( x = X -> ( [. Y / y ]. ph <-> [. X / x ]. [. Y / y ]. ph ) ) |
|
| 7 | 5 6 | sylan9bbr | |- ( ( x = X /\ y = Y ) -> ( ph <-> [. X / x ]. [. Y / y ]. ph ) ) |
| 8 | 7 | adantl | |- ( ( ( X e. _V /\ Y e. _V ) /\ ( x = X /\ y = Y ) ) -> ( ph <-> [. X / x ]. [. Y / y ]. ph ) ) |
| 9 | 8 | rabbidv | |- ( ( ( X e. _V /\ Y e. _V ) /\ ( x = X /\ y = Y ) ) -> { z e. M | ph } = { z e. M | [. X / x ]. [. Y / y ]. ph } ) |
| 10 | eqidd | |- ( ( ( X e. _V /\ Y e. _V ) /\ x = X ) -> _V = _V ) |
|
| 11 | simpl | |- ( ( X e. _V /\ Y e. _V ) -> X e. _V ) |
|
| 12 | simpr | |- ( ( X e. _V /\ Y e. _V ) -> Y e. _V ) |
|
| 13 | rabexg | |- ( M e. _V -> { z e. M | [. X / x ]. [. Y / y ]. ph } e. _V ) |
|
| 14 | 2 13 | syl | |- ( ( X e. _V /\ Y e. _V ) -> { z e. M | [. X / x ]. [. Y / y ]. ph } e. _V ) |
| 15 | nfcv | |- F/_ x X |
|
| 16 | 15 | nfel1 | |- F/ x X e. _V |
| 17 | nfcv | |- F/_ x Y |
|
| 18 | 17 | nfel1 | |- F/ x Y e. _V |
| 19 | 16 18 | nfan | |- F/ x ( X e. _V /\ Y e. _V ) |
| 20 | nfcv | |- F/_ y X |
|
| 21 | 20 | nfel1 | |- F/ y X e. _V |
| 22 | nfcv | |- F/_ y Y |
|
| 23 | 22 | nfel1 | |- F/ y Y e. _V |
| 24 | 21 23 | nfan | |- F/ y ( X e. _V /\ Y e. _V ) |
| 25 | nfsbc1v | |- F/ x [. X / x ]. [. Y / y ]. ph |
|
| 26 | nfcv | |- F/_ x M |
|
| 27 | 25 26 | nfrabw | |- F/_ x { z e. M | [. X / x ]. [. Y / y ]. ph } |
| 28 | nfsbc1v | |- F/ y [. Y / y ]. ph |
|
| 29 | 20 28 | nfsbcw | |- F/ y [. X / x ]. [. Y / y ]. ph |
| 30 | nfcv | |- F/_ y M |
|
| 31 | 29 30 | nfrabw | |- F/_ y { z e. M | [. X / x ]. [. Y / y ]. ph } |
| 32 | 4 9 10 11 12 14 19 24 20 17 27 31 | ovmpodxf | |- ( ( X e. _V /\ Y e. _V ) -> ( X O Y ) = { z e. M | [. X / x ]. [. Y / y ]. ph } ) |
| 33 | 32 | eleq2d | |- ( ( X e. _V /\ Y e. _V ) -> ( Z e. ( X O Y ) <-> Z e. { z e. M | [. X / x ]. [. Y / y ]. ph } ) ) |
| 34 | df-3an | |- ( ( X e. _V /\ Y e. _V /\ Z e. M ) <-> ( ( X e. _V /\ Y e. _V ) /\ Z e. M ) ) |
|
| 35 | 34 | simplbi2com | |- ( Z e. M -> ( ( X e. _V /\ Y e. _V ) -> ( X e. _V /\ Y e. _V /\ Z e. M ) ) ) |
| 36 | elrabi | |- ( Z e. { z e. M | [. X / x ]. [. Y / y ]. ph } -> Z e. M ) |
|
| 37 | 35 36 | syl11 | |- ( ( X e. _V /\ Y e. _V ) -> ( Z e. { z e. M | [. X / x ]. [. Y / y ]. ph } -> ( X e. _V /\ Y e. _V /\ Z e. M ) ) ) |
| 38 | 33 37 | sylbid | |- ( ( X e. _V /\ Y e. _V ) -> ( Z e. ( X O Y ) -> ( X e. _V /\ Y e. _V /\ Z e. M ) ) ) |
| 39 | 3 38 | mpcom | |- ( Z e. ( X O Y ) -> ( X e. _V /\ Y e. _V /\ Z e. M ) ) |