This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A variable not free in a wff remains so in a restricted class abstraction. Version of nfrab with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 13-Oct-2003) Avoid ax-13 . (Revised by GG, 10-Jan-2024) (Proof shortened by Wolf Lammen, 23-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nfrabw.1 | |- F/ x ph |
|
| nfrabw.2 | |- F/_ x A |
||
| Assertion | nfrabw | |- F/_ x { y e. A | ph } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfrabw.1 | |- F/ x ph |
|
| 2 | nfrabw.2 | |- F/_ x A |
|
| 3 | df-rab | |- { y e. A | ph } = { y | ( y e. A /\ ph ) } |
|
| 4 | nftru | |- F/ y T. |
|
| 5 | 2 | nfcri | |- F/ x y e. A |
| 6 | 5 1 | nfan | |- F/ x ( y e. A /\ ph ) |
| 7 | 6 | a1i | |- ( T. -> F/ x ( y e. A /\ ph ) ) |
| 8 | 4 7 | nfabdw | |- ( T. -> F/_ x { y | ( y e. A /\ ph ) } ) |
| 9 | 8 | mptru | |- F/_ x { y | ( y e. A /\ ph ) } |
| 10 | 3 9 | nfcxfr | |- F/_ x { y e. A | ph } |