This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The nonnegative integer property expressed in terms of positive integers. (Contributed by NM, 10-May-2004) (Proof shortened by Mario Carneiro, 16-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elnn0nn | |- ( N e. NN0 <-> ( N e. CC /\ ( N + 1 ) e. NN ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0cn | |- ( N e. NN0 -> N e. CC ) |
|
| 2 | nn0p1nn | |- ( N e. NN0 -> ( N + 1 ) e. NN ) |
|
| 3 | 1 2 | jca | |- ( N e. NN0 -> ( N e. CC /\ ( N + 1 ) e. NN ) ) |
| 4 | simpl | |- ( ( N e. CC /\ ( N + 1 ) e. NN ) -> N e. CC ) |
|
| 5 | ax-1cn | |- 1 e. CC |
|
| 6 | pncan | |- ( ( N e. CC /\ 1 e. CC ) -> ( ( N + 1 ) - 1 ) = N ) |
|
| 7 | 4 5 6 | sylancl | |- ( ( N e. CC /\ ( N + 1 ) e. NN ) -> ( ( N + 1 ) - 1 ) = N ) |
| 8 | nnm1nn0 | |- ( ( N + 1 ) e. NN -> ( ( N + 1 ) - 1 ) e. NN0 ) |
|
| 9 | 8 | adantl | |- ( ( N e. CC /\ ( N + 1 ) e. NN ) -> ( ( N + 1 ) - 1 ) e. NN0 ) |
| 10 | 7 9 | eqeltrrd | |- ( ( N e. CC /\ ( N + 1 ) e. NN ) -> N e. NN0 ) |
| 11 | 3 10 | impbii | |- ( N e. NN0 <-> ( N e. CC /\ ( N + 1 ) e. NN ) ) |