This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The nonnegative integer property expressed in terms of positive integers. (Contributed by NM, 10-May-2004) (Proof shortened by Mario Carneiro, 16-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elnn0nn | ⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℂ ∧ ( 𝑁 + 1 ) ∈ ℕ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0cn | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ ) | |
| 2 | nn0p1nn | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℕ ) | |
| 3 | 1 2 | jca | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 ∈ ℂ ∧ ( 𝑁 + 1 ) ∈ ℕ ) ) |
| 4 | simpl | ⊢ ( ( 𝑁 ∈ ℂ ∧ ( 𝑁 + 1 ) ∈ ℕ ) → 𝑁 ∈ ℂ ) | |
| 5 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 6 | pncan | ⊢ ( ( 𝑁 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) | |
| 7 | 4 5 6 | sylancl | ⊢ ( ( 𝑁 ∈ ℂ ∧ ( 𝑁 + 1 ) ∈ ℕ ) → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) |
| 8 | nnm1nn0 | ⊢ ( ( 𝑁 + 1 ) ∈ ℕ → ( ( 𝑁 + 1 ) − 1 ) ∈ ℕ0 ) | |
| 9 | 8 | adantl | ⊢ ( ( 𝑁 ∈ ℂ ∧ ( 𝑁 + 1 ) ∈ ℕ ) → ( ( 𝑁 + 1 ) − 1 ) ∈ ℕ0 ) |
| 10 | 7 9 | eqeltrrd | ⊢ ( ( 𝑁 ∈ ℂ ∧ ( 𝑁 + 1 ) ∈ ℕ ) → 𝑁 ∈ ℕ0 ) |
| 11 | 3 10 | impbii | ⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℂ ∧ ( 𝑁 + 1 ) ∈ ℕ ) ) |