This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The positive integer property expressed in terms of nonnegative integers. (Contributed by NM, 10-May-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elnnnn0 | |- ( N e. NN <-> ( N e. CC /\ ( N - 1 ) e. NN0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nncn | |- ( N e. NN -> N e. CC ) |
|
| 2 | npcan1 | |- ( N e. CC -> ( ( N - 1 ) + 1 ) = N ) |
|
| 3 | 2 | eleq1d | |- ( N e. CC -> ( ( ( N - 1 ) + 1 ) e. NN <-> N e. NN ) ) |
| 4 | peano2cnm | |- ( N e. CC -> ( N - 1 ) e. CC ) |
|
| 5 | 4 | biantrurd | |- ( N e. CC -> ( ( ( N - 1 ) + 1 ) e. NN <-> ( ( N - 1 ) e. CC /\ ( ( N - 1 ) + 1 ) e. NN ) ) ) |
| 6 | 3 5 | bitr3d | |- ( N e. CC -> ( N e. NN <-> ( ( N - 1 ) e. CC /\ ( ( N - 1 ) + 1 ) e. NN ) ) ) |
| 7 | elnn0nn | |- ( ( N - 1 ) e. NN0 <-> ( ( N - 1 ) e. CC /\ ( ( N - 1 ) + 1 ) e. NN ) ) |
|
| 8 | 6 7 | bitr4di | |- ( N e. CC -> ( N e. NN <-> ( N - 1 ) e. NN0 ) ) |
| 9 | 1 8 | biadanii | |- ( N e. NN <-> ( N e. CC /\ ( N - 1 ) e. NN0 ) ) |