This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A scalar product with a vector belongs to the span of its singleton. (Contributed by NM, 3-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | spansnmul | |- ( ( A e. ~H /\ B e. CC ) -> ( B .h A ) e. ( span ` { A } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spansnsh | |- ( A e. ~H -> ( span ` { A } ) e. SH ) |
|
| 2 | spansnid | |- ( A e. ~H -> A e. ( span ` { A } ) ) |
|
| 3 | 1 2 | jca | |- ( A e. ~H -> ( ( span ` { A } ) e. SH /\ A e. ( span ` { A } ) ) ) |
| 4 | shmulcl | |- ( ( ( span ` { A } ) e. SH /\ B e. CC /\ A e. ( span ` { A } ) ) -> ( B .h A ) e. ( span ` { A } ) ) |
|
| 5 | 4 | 3com12 | |- ( ( B e. CC /\ ( span ` { A } ) e. SH /\ A e. ( span ` { A } ) ) -> ( B .h A ) e. ( span ` { A } ) ) |
| 6 | 5 | 3expb | |- ( ( B e. CC /\ ( ( span ` { A } ) e. SH /\ A e. ( span ` { A } ) ) ) -> ( B .h A ) e. ( span ` { A } ) ) |
| 7 | 3 6 | sylan2 | |- ( ( B e. CC /\ A e. ~H ) -> ( B .h A ) e. ( span ` { A } ) ) |
| 8 | 7 | ancoms | |- ( ( A e. ~H /\ B e. CC ) -> ( B .h A ) e. ( span ` { A } ) ) |