This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete as of 15-Mar-2020. Lemma for elghomOLD . (Contributed by Paul Chapman, 25-Feb-2008) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | elghomlem1OLD.1 | |- S = { f | ( f : ran G --> ran H /\ A. x e. ran G A. y e. ran G ( ( f ` x ) H ( f ` y ) ) = ( f ` ( x G y ) ) ) } |
|
| Assertion | elghomlem1OLD | |- ( ( G e. GrpOp /\ H e. GrpOp ) -> ( G GrpOpHom H ) = S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elghomlem1OLD.1 | |- S = { f | ( f : ran G --> ran H /\ A. x e. ran G A. y e. ran G ( ( f ` x ) H ( f ` y ) ) = ( f ` ( x G y ) ) ) } |
|
| 2 | rnexg | |- ( G e. GrpOp -> ran G e. _V ) |
|
| 3 | rnexg | |- ( H e. GrpOp -> ran H e. _V ) |
|
| 4 | 1 | fabexg | |- ( ( ran G e. _V /\ ran H e. _V ) -> S e. _V ) |
| 5 | 2 3 4 | syl2an | |- ( ( G e. GrpOp /\ H e. GrpOp ) -> S e. _V ) |
| 6 | rneq | |- ( g = G -> ran g = ran G ) |
|
| 7 | 6 | feq2d | |- ( g = G -> ( f : ran g --> ran h <-> f : ran G --> ran h ) ) |
| 8 | oveq | |- ( g = G -> ( x g y ) = ( x G y ) ) |
|
| 9 | 8 | fveq2d | |- ( g = G -> ( f ` ( x g y ) ) = ( f ` ( x G y ) ) ) |
| 10 | 9 | eqeq2d | |- ( g = G -> ( ( ( f ` x ) h ( f ` y ) ) = ( f ` ( x g y ) ) <-> ( ( f ` x ) h ( f ` y ) ) = ( f ` ( x G y ) ) ) ) |
| 11 | 6 10 | raleqbidv | |- ( g = G -> ( A. y e. ran g ( ( f ` x ) h ( f ` y ) ) = ( f ` ( x g y ) ) <-> A. y e. ran G ( ( f ` x ) h ( f ` y ) ) = ( f ` ( x G y ) ) ) ) |
| 12 | 6 11 | raleqbidv | |- ( g = G -> ( A. x e. ran g A. y e. ran g ( ( f ` x ) h ( f ` y ) ) = ( f ` ( x g y ) ) <-> A. x e. ran G A. y e. ran G ( ( f ` x ) h ( f ` y ) ) = ( f ` ( x G y ) ) ) ) |
| 13 | 7 12 | anbi12d | |- ( g = G -> ( ( f : ran g --> ran h /\ A. x e. ran g A. y e. ran g ( ( f ` x ) h ( f ` y ) ) = ( f ` ( x g y ) ) ) <-> ( f : ran G --> ran h /\ A. x e. ran G A. y e. ran G ( ( f ` x ) h ( f ` y ) ) = ( f ` ( x G y ) ) ) ) ) |
| 14 | 13 | abbidv | |- ( g = G -> { f | ( f : ran g --> ran h /\ A. x e. ran g A. y e. ran g ( ( f ` x ) h ( f ` y ) ) = ( f ` ( x g y ) ) ) } = { f | ( f : ran G --> ran h /\ A. x e. ran G A. y e. ran G ( ( f ` x ) h ( f ` y ) ) = ( f ` ( x G y ) ) ) } ) |
| 15 | rneq | |- ( h = H -> ran h = ran H ) |
|
| 16 | 15 | feq3d | |- ( h = H -> ( f : ran G --> ran h <-> f : ran G --> ran H ) ) |
| 17 | oveq | |- ( h = H -> ( ( f ` x ) h ( f ` y ) ) = ( ( f ` x ) H ( f ` y ) ) ) |
|
| 18 | 17 | eqeq1d | |- ( h = H -> ( ( ( f ` x ) h ( f ` y ) ) = ( f ` ( x G y ) ) <-> ( ( f ` x ) H ( f ` y ) ) = ( f ` ( x G y ) ) ) ) |
| 19 | 18 | 2ralbidv | |- ( h = H -> ( A. x e. ran G A. y e. ran G ( ( f ` x ) h ( f ` y ) ) = ( f ` ( x G y ) ) <-> A. x e. ran G A. y e. ran G ( ( f ` x ) H ( f ` y ) ) = ( f ` ( x G y ) ) ) ) |
| 20 | 16 19 | anbi12d | |- ( h = H -> ( ( f : ran G --> ran h /\ A. x e. ran G A. y e. ran G ( ( f ` x ) h ( f ` y ) ) = ( f ` ( x G y ) ) ) <-> ( f : ran G --> ran H /\ A. x e. ran G A. y e. ran G ( ( f ` x ) H ( f ` y ) ) = ( f ` ( x G y ) ) ) ) ) |
| 21 | 20 | abbidv | |- ( h = H -> { f | ( f : ran G --> ran h /\ A. x e. ran G A. y e. ran G ( ( f ` x ) h ( f ` y ) ) = ( f ` ( x G y ) ) ) } = { f | ( f : ran G --> ran H /\ A. x e. ran G A. y e. ran G ( ( f ` x ) H ( f ` y ) ) = ( f ` ( x G y ) ) ) } ) |
| 22 | 21 1 | eqtr4di | |- ( h = H -> { f | ( f : ran G --> ran h /\ A. x e. ran G A. y e. ran G ( ( f ` x ) h ( f ` y ) ) = ( f ` ( x G y ) ) ) } = S ) |
| 23 | df-ghomOLD | |- GrpOpHom = ( g e. GrpOp , h e. GrpOp |-> { f | ( f : ran g --> ran h /\ A. x e. ran g A. y e. ran g ( ( f ` x ) h ( f ` y ) ) = ( f ` ( x g y ) ) ) } ) |
|
| 24 | 14 22 23 | ovmpog | |- ( ( G e. GrpOp /\ H e. GrpOp /\ S e. _V ) -> ( G GrpOpHom H ) = S ) |
| 25 | 5 24 | mpd3an3 | |- ( ( G e. GrpOp /\ H e. GrpOp ) -> ( G GrpOpHom H ) = S ) |