This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of df-ghm as of 15-Mar-2020. Define the set of group homomorphisms from g to h . (Contributed by Paul Chapman, 25-Feb-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-ghomOLD | |- GrpOpHom = ( g e. GrpOp , h e. GrpOp |-> { f | ( f : ran g --> ran h /\ A. x e. ran g A. y e. ran g ( ( f ` x ) h ( f ` y ) ) = ( f ` ( x g y ) ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cghomOLD | |- GrpOpHom |
|
| 1 | vg | |- g |
|
| 2 | cgr | |- GrpOp |
|
| 3 | vh | |- h |
|
| 4 | vf | |- f |
|
| 5 | 4 | cv | |- f |
| 6 | 1 | cv | |- g |
| 7 | 6 | crn | |- ran g |
| 8 | 3 | cv | |- h |
| 9 | 8 | crn | |- ran h |
| 10 | 7 9 5 | wf | |- f : ran g --> ran h |
| 11 | vx | |- x |
|
| 12 | vy | |- y |
|
| 13 | 11 | cv | |- x |
| 14 | 13 5 | cfv | |- ( f ` x ) |
| 15 | 12 | cv | |- y |
| 16 | 15 5 | cfv | |- ( f ` y ) |
| 17 | 14 16 8 | co | |- ( ( f ` x ) h ( f ` y ) ) |
| 18 | 13 15 6 | co | |- ( x g y ) |
| 19 | 18 5 | cfv | |- ( f ` ( x g y ) ) |
| 20 | 17 19 | wceq | |- ( ( f ` x ) h ( f ` y ) ) = ( f ` ( x g y ) ) |
| 21 | 20 12 7 | wral | |- A. y e. ran g ( ( f ` x ) h ( f ` y ) ) = ( f ` ( x g y ) ) |
| 22 | 21 11 7 | wral | |- A. x e. ran g A. y e. ran g ( ( f ` x ) h ( f ` y ) ) = ( f ` ( x g y ) ) |
| 23 | 10 22 | wa | |- ( f : ran g --> ran h /\ A. x e. ran g A. y e. ran g ( ( f ` x ) h ( f ` y ) ) = ( f ` ( x g y ) ) ) |
| 24 | 23 4 | cab | |- { f | ( f : ran g --> ran h /\ A. x e. ran g A. y e. ran g ( ( f ` x ) h ( f ` y ) ) = ( f ` ( x g y ) ) ) } |
| 25 | 1 3 2 2 24 | cmpo | |- ( g e. GrpOp , h e. GrpOp |-> { f | ( f : ran g --> ran h /\ A. x e. ran g A. y e. ran g ( ( f ` x ) h ( f ` y ) ) = ( f ` ( x g y ) ) ) } ) |
| 26 | 0 25 | wceq | |- GrpOpHom = ( g e. GrpOp , h e. GrpOp |-> { f | ( f : ran g --> ran h /\ A. x e. ran g A. y e. ran g ( ( f ` x ) h ( f ` y ) ) = ( f ` ( x g y ) ) ) } ) |