This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existence of a set of functions. (Contributed by Paul Chapman, 25-Feb-2008) (Proof shortened by AV, 9-Jun-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fabexg.1 | |- F = { x | ( x : A --> B /\ ph ) } |
|
| Assertion | fabexg | |- ( ( A e. C /\ B e. D ) -> F e. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fabexg.1 | |- F = { x | ( x : A --> B /\ ph ) } |
|
| 2 | elex | |- ( A e. C -> A e. _V ) |
|
| 3 | elex | |- ( B e. D -> B e. _V ) |
|
| 4 | simprl | |- ( ( ( A e. _V /\ B e. _V ) /\ ( x : A --> B /\ ph ) ) -> x : A --> B ) |
|
| 5 | simpl | |- ( ( A e. _V /\ B e. _V ) -> A e. _V ) |
|
| 6 | simpr | |- ( ( A e. _V /\ B e. _V ) -> B e. _V ) |
|
| 7 | 4 5 6 | fabexd | |- ( ( A e. _V /\ B e. _V ) -> { x | ( x : A --> B /\ ph ) } e. _V ) |
| 8 | 1 7 | eqeltrid | |- ( ( A e. _V /\ B e. _V ) -> F e. _V ) |
| 9 | 2 3 8 | syl2an | |- ( ( A e. C /\ B e. D ) -> F e. _V ) |