This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete as of 15-Mar-2020. Lemma for elghomOLD . (Contributed by Paul Chapman, 25-Feb-2008) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | elghomlem1OLD.1 | |- S = { f | ( f : ran G --> ran H /\ A. x e. ran G A. y e. ran G ( ( f ` x ) H ( f ` y ) ) = ( f ` ( x G y ) ) ) } |
|
| Assertion | elghomlem2OLD | |- ( ( G e. GrpOp /\ H e. GrpOp ) -> ( F e. ( G GrpOpHom H ) <-> ( F : ran G --> ran H /\ A. x e. ran G A. y e. ran G ( ( F ` x ) H ( F ` y ) ) = ( F ` ( x G y ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elghomlem1OLD.1 | |- S = { f | ( f : ran G --> ran H /\ A. x e. ran G A. y e. ran G ( ( f ` x ) H ( f ` y ) ) = ( f ` ( x G y ) ) ) } |
|
| 2 | 1 | elghomlem1OLD | |- ( ( G e. GrpOp /\ H e. GrpOp ) -> ( G GrpOpHom H ) = S ) |
| 3 | 2 | eleq2d | |- ( ( G e. GrpOp /\ H e. GrpOp ) -> ( F e. ( G GrpOpHom H ) <-> F e. S ) ) |
| 4 | elex | |- ( F e. S -> F e. _V ) |
|
| 5 | feq1 | |- ( f = F -> ( f : ran G --> ran H <-> F : ran G --> ran H ) ) |
|
| 6 | fveq1 | |- ( f = F -> ( f ` x ) = ( F ` x ) ) |
|
| 7 | fveq1 | |- ( f = F -> ( f ` y ) = ( F ` y ) ) |
|
| 8 | 6 7 | oveq12d | |- ( f = F -> ( ( f ` x ) H ( f ` y ) ) = ( ( F ` x ) H ( F ` y ) ) ) |
| 9 | fveq1 | |- ( f = F -> ( f ` ( x G y ) ) = ( F ` ( x G y ) ) ) |
|
| 10 | 8 9 | eqeq12d | |- ( f = F -> ( ( ( f ` x ) H ( f ` y ) ) = ( f ` ( x G y ) ) <-> ( ( F ` x ) H ( F ` y ) ) = ( F ` ( x G y ) ) ) ) |
| 11 | 10 | 2ralbidv | |- ( f = F -> ( A. x e. ran G A. y e. ran G ( ( f ` x ) H ( f ` y ) ) = ( f ` ( x G y ) ) <-> A. x e. ran G A. y e. ran G ( ( F ` x ) H ( F ` y ) ) = ( F ` ( x G y ) ) ) ) |
| 12 | 5 11 | anbi12d | |- ( f = F -> ( ( f : ran G --> ran H /\ A. x e. ran G A. y e. ran G ( ( f ` x ) H ( f ` y ) ) = ( f ` ( x G y ) ) ) <-> ( F : ran G --> ran H /\ A. x e. ran G A. y e. ran G ( ( F ` x ) H ( F ` y ) ) = ( F ` ( x G y ) ) ) ) ) |
| 13 | 12 1 | elab2g | |- ( F e. _V -> ( F e. S <-> ( F : ran G --> ran H /\ A. x e. ran G A. y e. ran G ( ( F ` x ) H ( F ` y ) ) = ( F ` ( x G y ) ) ) ) ) |
| 14 | 13 | biimpd | |- ( F e. _V -> ( F e. S -> ( F : ran G --> ran H /\ A. x e. ran G A. y e. ran G ( ( F ` x ) H ( F ` y ) ) = ( F ` ( x G y ) ) ) ) ) |
| 15 | 4 14 | mpcom | |- ( F e. S -> ( F : ran G --> ran H /\ A. x e. ran G A. y e. ran G ( ( F ` x ) H ( F ` y ) ) = ( F ` ( x G y ) ) ) ) |
| 16 | rnexg | |- ( G e. GrpOp -> ran G e. _V ) |
|
| 17 | fex | |- ( ( F : ran G --> ran H /\ ran G e. _V ) -> F e. _V ) |
|
| 18 | 17 | expcom | |- ( ran G e. _V -> ( F : ran G --> ran H -> F e. _V ) ) |
| 19 | 16 18 | syl | |- ( G e. GrpOp -> ( F : ran G --> ran H -> F e. _V ) ) |
| 20 | 19 | adantrd | |- ( G e. GrpOp -> ( ( F : ran G --> ran H /\ A. x e. ran G A. y e. ran G ( ( F ` x ) H ( F ` y ) ) = ( F ` ( x G y ) ) ) -> F e. _V ) ) |
| 21 | 13 | biimprd | |- ( F e. _V -> ( ( F : ran G --> ran H /\ A. x e. ran G A. y e. ran G ( ( F ` x ) H ( F ` y ) ) = ( F ` ( x G y ) ) ) -> F e. S ) ) |
| 22 | 20 21 | syli | |- ( G e. GrpOp -> ( ( F : ran G --> ran H /\ A. x e. ran G A. y e. ran G ( ( F ` x ) H ( F ` y ) ) = ( F ` ( x G y ) ) ) -> F e. S ) ) |
| 23 | 15 22 | impbid2 | |- ( G e. GrpOp -> ( F e. S <-> ( F : ran G --> ran H /\ A. x e. ran G A. y e. ran G ( ( F ` x ) H ( F ` y ) ) = ( F ` ( x G y ) ) ) ) ) |
| 24 | 23 | adantr | |- ( ( G e. GrpOp /\ H e. GrpOp ) -> ( F e. S <-> ( F : ran G --> ran H /\ A. x e. ran G A. y e. ran G ( ( F ` x ) H ( F ` y ) ) = ( F ` ( x G y ) ) ) ) ) |
| 25 | 3 24 | bitrd | |- ( ( G e. GrpOp /\ H e. GrpOp ) -> ( F e. ( G GrpOpHom H ) <-> ( F : ran G --> ran H /\ A. x e. ran G A. y e. ran G ( ( F ` x ) H ( F ` y ) ) = ( F ` ( x G y ) ) ) ) ) |