This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of isghm as of 15-Mar-2020. Membership in the set of group homomorphisms from G to H . (Contributed by Paul Chapman, 3-Mar-2008) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elghomOLD.1 | |- X = ran G |
|
| elghomOLD.2 | |- W = ran H |
||
| Assertion | elghomOLD | |- ( ( G e. GrpOp /\ H e. GrpOp ) -> ( F e. ( G GrpOpHom H ) <-> ( F : X --> W /\ A. x e. X A. y e. X ( ( F ` x ) H ( F ` y ) ) = ( F ` ( x G y ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elghomOLD.1 | |- X = ran G |
|
| 2 | elghomOLD.2 | |- W = ran H |
|
| 3 | eqid | |- { f | ( f : ran G --> ran H /\ A. x e. ran G A. y e. ran G ( ( f ` x ) H ( f ` y ) ) = ( f ` ( x G y ) ) ) } = { f | ( f : ran G --> ran H /\ A. x e. ran G A. y e. ran G ( ( f ` x ) H ( f ` y ) ) = ( f ` ( x G y ) ) ) } |
|
| 4 | 3 | elghomlem2OLD | |- ( ( G e. GrpOp /\ H e. GrpOp ) -> ( F e. ( G GrpOpHom H ) <-> ( F : ran G --> ran H /\ A. x e. ran G A. y e. ran G ( ( F ` x ) H ( F ` y ) ) = ( F ` ( x G y ) ) ) ) ) |
| 5 | 1 2 | feq23i | |- ( F : X --> W <-> F : ran G --> ran H ) |
| 6 | 1 | raleqi | |- ( A. y e. X ( ( F ` x ) H ( F ` y ) ) = ( F ` ( x G y ) ) <-> A. y e. ran G ( ( F ` x ) H ( F ` y ) ) = ( F ` ( x G y ) ) ) |
| 7 | 1 6 | raleqbii | |- ( A. x e. X A. y e. X ( ( F ` x ) H ( F ` y ) ) = ( F ` ( x G y ) ) <-> A. x e. ran G A. y e. ran G ( ( F ` x ) H ( F ` y ) ) = ( F ` ( x G y ) ) ) |
| 8 | 5 7 | anbi12i | |- ( ( F : X --> W /\ A. x e. X A. y e. X ( ( F ` x ) H ( F ` y ) ) = ( F ` ( x G y ) ) ) <-> ( F : ran G --> ran H /\ A. x e. ran G A. y e. ran G ( ( F ` x ) H ( F ` y ) ) = ( F ` ( x G y ) ) ) ) |
| 9 | 4 8 | bitr4di | |- ( ( G e. GrpOp /\ H e. GrpOp ) -> ( F e. ( G GrpOpHom H ) <-> ( F : X --> W /\ A. x e. X A. y e. X ( ( F ` x ) H ( F ` y ) ) = ( F ` ( x G y ) ) ) ) ) |