This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A member of a finite interval of integers is either its lower bound or its upper bound or an element of its interior. (Contributed by AV, 5-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elfzlmr | |- ( K e. ( M ... N ) -> ( K = M \/ K e. ( ( M + 1 ) ..^ N ) \/ K = N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuz2 | |- ( K e. ( M ... N ) -> N e. ( ZZ>= ` M ) ) |
|
| 2 | fzpred | |- ( N e. ( ZZ>= ` M ) -> ( M ... N ) = ( { M } u. ( ( M + 1 ) ... N ) ) ) |
|
| 3 | 2 | eleq2d | |- ( N e. ( ZZ>= ` M ) -> ( K e. ( M ... N ) <-> K e. ( { M } u. ( ( M + 1 ) ... N ) ) ) ) |
| 4 | elsni | |- ( K e. { M } -> K = M ) |
|
| 5 | elfzr | |- ( K e. ( ( M + 1 ) ... N ) -> ( K e. ( ( M + 1 ) ..^ N ) \/ K = N ) ) |
|
| 6 | 4 5 | orim12i | |- ( ( K e. { M } \/ K e. ( ( M + 1 ) ... N ) ) -> ( K = M \/ ( K e. ( ( M + 1 ) ..^ N ) \/ K = N ) ) ) |
| 7 | elun | |- ( K e. ( { M } u. ( ( M + 1 ) ... N ) ) <-> ( K e. { M } \/ K e. ( ( M + 1 ) ... N ) ) ) |
|
| 8 | 3orass | |- ( ( K = M \/ K e. ( ( M + 1 ) ..^ N ) \/ K = N ) <-> ( K = M \/ ( K e. ( ( M + 1 ) ..^ N ) \/ K = N ) ) ) |
|
| 9 | 6 7 8 | 3imtr4i | |- ( K e. ( { M } u. ( ( M + 1 ) ... N ) ) -> ( K = M \/ K e. ( ( M + 1 ) ..^ N ) \/ K = N ) ) |
| 10 | 3 9 | biimtrdi | |- ( N e. ( ZZ>= ` M ) -> ( K e. ( M ... N ) -> ( K = M \/ K e. ( ( M + 1 ) ..^ N ) \/ K = N ) ) ) |
| 11 | 1 10 | mpcom | |- ( K e. ( M ... N ) -> ( K = M \/ K e. ( ( M + 1 ) ..^ N ) \/ K = N ) ) |