This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A member of a finite interval of integers is either a member of the corresponding half-open integer range or the upper bound of the interval. (Contributed by AV, 5-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elfzr | |- ( K e. ( M ... N ) -> ( K e. ( M ..^ N ) \/ K = N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuz2 | |- ( K e. ( M ... N ) -> N e. ( ZZ>= ` M ) ) |
|
| 2 | fzisfzounsn | |- ( N e. ( ZZ>= ` M ) -> ( M ... N ) = ( ( M ..^ N ) u. { N } ) ) |
|
| 3 | 2 | eleq2d | |- ( N e. ( ZZ>= ` M ) -> ( K e. ( M ... N ) <-> K e. ( ( M ..^ N ) u. { N } ) ) ) |
| 4 | elun | |- ( K e. ( ( M ..^ N ) u. { N } ) <-> ( K e. ( M ..^ N ) \/ K e. { N } ) ) |
|
| 5 | elsni | |- ( K e. { N } -> K = N ) |
|
| 6 | 5 | orim2i | |- ( ( K e. ( M ..^ N ) \/ K e. { N } ) -> ( K e. ( M ..^ N ) \/ K = N ) ) |
| 7 | 4 6 | sylbi | |- ( K e. ( ( M ..^ N ) u. { N } ) -> ( K e. ( M ..^ N ) \/ K = N ) ) |
| 8 | 3 7 | biimtrdi | |- ( N e. ( ZZ>= ` M ) -> ( K e. ( M ... N ) -> ( K e. ( M ..^ N ) \/ K = N ) ) ) |
| 9 | 1 8 | mpcom | |- ( K e. ( M ... N ) -> ( K e. ( M ..^ N ) \/ K = N ) ) |