This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A member of a finite interval of integers is either its lower bound or its upper bound or an element of its interior. (Contributed by AV, 5-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elfzlmr | ⊢ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐾 = 𝑀 ∨ 𝐾 ∈ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ∨ 𝐾 = 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuz2 | ⊢ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 2 | fzpred | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑀 ... 𝑁 ) = ( { 𝑀 } ∪ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) | |
| 3 | 2 | eleq2d | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) ↔ 𝐾 ∈ ( { 𝑀 } ∪ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) ) |
| 4 | elsni | ⊢ ( 𝐾 ∈ { 𝑀 } → 𝐾 = 𝑀 ) | |
| 5 | elfzr | ⊢ ( 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) → ( 𝐾 ∈ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ∨ 𝐾 = 𝑁 ) ) | |
| 6 | 4 5 | orim12i | ⊢ ( ( 𝐾 ∈ { 𝑀 } ∨ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → ( 𝐾 = 𝑀 ∨ ( 𝐾 ∈ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ∨ 𝐾 = 𝑁 ) ) ) |
| 7 | elun | ⊢ ( 𝐾 ∈ ( { 𝑀 } ∪ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ↔ ( 𝐾 ∈ { 𝑀 } ∨ 𝐾 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) ) | |
| 8 | 3orass | ⊢ ( ( 𝐾 = 𝑀 ∨ 𝐾 ∈ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ∨ 𝐾 = 𝑁 ) ↔ ( 𝐾 = 𝑀 ∨ ( 𝐾 ∈ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ∨ 𝐾 = 𝑁 ) ) ) | |
| 9 | 6 7 8 | 3imtr4i | ⊢ ( 𝐾 ∈ ( { 𝑀 } ∪ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → ( 𝐾 = 𝑀 ∨ 𝐾 ∈ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ∨ 𝐾 = 𝑁 ) ) |
| 10 | 3 9 | biimtrdi | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐾 = 𝑀 ∨ 𝐾 ∈ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ∨ 𝐾 = 𝑁 ) ) ) |
| 11 | 1 10 | mpcom | ⊢ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐾 = 𝑀 ∨ 𝐾 ∈ ( ( 𝑀 + 1 ) ..^ 𝑁 ) ∨ 𝐾 = 𝑁 ) ) |