This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define a function (indexed by a topology j ) whose value is the limits of a filter f . (Contributed by Jeff Hankins, 4-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-flim | |- fLim = ( j e. Top , f e. U. ran Fil |-> { x e. U. j | ( ( ( nei ` j ) ` { x } ) C_ f /\ f C_ ~P U. j ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cflim | |- fLim |
|
| 1 | vj | |- j |
|
| 2 | ctop | |- Top |
|
| 3 | vf | |- f |
|
| 4 | cfil | |- Fil |
|
| 5 | 4 | crn | |- ran Fil |
| 6 | 5 | cuni | |- U. ran Fil |
| 7 | vx | |- x |
|
| 8 | 1 | cv | |- j |
| 9 | 8 | cuni | |- U. j |
| 10 | cnei | |- nei |
|
| 11 | 8 10 | cfv | |- ( nei ` j ) |
| 12 | 7 | cv | |- x |
| 13 | 12 | csn | |- { x } |
| 14 | 13 11 | cfv | |- ( ( nei ` j ) ` { x } ) |
| 15 | 3 | cv | |- f |
| 16 | 14 15 | wss | |- ( ( nei ` j ) ` { x } ) C_ f |
| 17 | 9 | cpw | |- ~P U. j |
| 18 | 15 17 | wss | |- f C_ ~P U. j |
| 19 | 16 18 | wa | |- ( ( ( nei ` j ) ` { x } ) C_ f /\ f C_ ~P U. j ) |
| 20 | 19 7 9 | crab | |- { x e. U. j | ( ( ( nei ` j ) ` { x } ) C_ f /\ f C_ ~P U. j ) } |
| 21 | 1 3 2 6 20 | cmpo | |- ( j e. Top , f e. U. ran Fil |-> { x e. U. j | ( ( ( nei ` j ) ` { x } ) C_ f /\ f C_ ~P U. j ) } ) |
| 22 | 0 21 | wceq | |- fLim = ( j e. Top , f e. U. ran Fil |-> { x e. U. j | ( ( ( nei ` j ) ` { x } ) C_ f /\ f C_ ~P U. j ) } ) |