This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a closure. (Contributed by NM, 5-Mar-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | clscld.1 | |- X = U. J |
|
| Assertion | elcls2 | |- ( ( J e. Top /\ S C_ X ) -> ( P e. ( ( cls ` J ) ` S ) <-> ( P e. X /\ A. x e. J ( P e. x -> ( x i^i S ) =/= (/) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clscld.1 | |- X = U. J |
|
| 2 | 1 | clsss3 | |- ( ( J e. Top /\ S C_ X ) -> ( ( cls ` J ) ` S ) C_ X ) |
| 3 | ssel | |- ( ( ( cls ` J ) ` S ) C_ X -> ( P e. ( ( cls ` J ) ` S ) -> P e. X ) ) |
|
| 4 | 3 | pm4.71rd | |- ( ( ( cls ` J ) ` S ) C_ X -> ( P e. ( ( cls ` J ) ` S ) <-> ( P e. X /\ P e. ( ( cls ` J ) ` S ) ) ) ) |
| 5 | 2 4 | syl | |- ( ( J e. Top /\ S C_ X ) -> ( P e. ( ( cls ` J ) ` S ) <-> ( P e. X /\ P e. ( ( cls ` J ) ` S ) ) ) ) |
| 6 | 1 | elcls | |- ( ( J e. Top /\ S C_ X /\ P e. X ) -> ( P e. ( ( cls ` J ) ` S ) <-> A. x e. J ( P e. x -> ( x i^i S ) =/= (/) ) ) ) |
| 7 | 6 | 3expa | |- ( ( ( J e. Top /\ S C_ X ) /\ P e. X ) -> ( P e. ( ( cls ` J ) ` S ) <-> A. x e. J ( P e. x -> ( x i^i S ) =/= (/) ) ) ) |
| 8 | 7 | pm5.32da | |- ( ( J e. Top /\ S C_ X ) -> ( ( P e. X /\ P e. ( ( cls ` J ) ` S ) ) <-> ( P e. X /\ A. x e. J ( P e. x -> ( x i^i S ) =/= (/) ) ) ) ) |
| 9 | 5 8 | bitrd | |- ( ( J e. Top /\ S C_ X ) -> ( P e. ( ( cls ` J ) ` S ) <-> ( P e. X /\ A. x e. J ( P e. x -> ( x i^i S ) =/= (/) ) ) ) ) |