This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The complement of a closure is open. (Contributed by NM, 11-Sep-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | clscld.1 | |- X = U. J |
|
| Assertion | cmclsopn | |- ( ( J e. Top /\ S C_ X ) -> ( X \ ( ( cls ` J ) ` S ) ) e. J ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clscld.1 | |- X = U. J |
|
| 2 | 1 | clsval2 | |- ( ( J e. Top /\ S C_ X ) -> ( ( cls ` J ) ` S ) = ( X \ ( ( int ` J ) ` ( X \ S ) ) ) ) |
| 3 | 2 | difeq2d | |- ( ( J e. Top /\ S C_ X ) -> ( X \ ( ( cls ` J ) ` S ) ) = ( X \ ( X \ ( ( int ` J ) ` ( X \ S ) ) ) ) ) |
| 4 | difss | |- ( X \ S ) C_ X |
|
| 5 | 1 | ntropn | |- ( ( J e. Top /\ ( X \ S ) C_ X ) -> ( ( int ` J ) ` ( X \ S ) ) e. J ) |
| 6 | 4 5 | mpan2 | |- ( J e. Top -> ( ( int ` J ) ` ( X \ S ) ) e. J ) |
| 7 | 1 | eltopss | |- ( ( J e. Top /\ ( ( int ` J ) ` ( X \ S ) ) e. J ) -> ( ( int ` J ) ` ( X \ S ) ) C_ X ) |
| 8 | 6 7 | mpdan | |- ( J e. Top -> ( ( int ` J ) ` ( X \ S ) ) C_ X ) |
| 9 | dfss4 | |- ( ( ( int ` J ) ` ( X \ S ) ) C_ X <-> ( X \ ( X \ ( ( int ` J ) ` ( X \ S ) ) ) ) = ( ( int ` J ) ` ( X \ S ) ) ) |
|
| 10 | 8 9 | sylib | |- ( J e. Top -> ( X \ ( X \ ( ( int ` J ) ` ( X \ S ) ) ) ) = ( ( int ` J ) ` ( X \ S ) ) ) |
| 11 | 10 6 | eqeltrd | |- ( J e. Top -> ( X \ ( X \ ( ( int ` J ) ` ( X \ S ) ) ) ) e. J ) |
| 12 | 11 | adantr | |- ( ( J e. Top /\ S C_ X ) -> ( X \ ( X \ ( ( int ` J ) ` ( X \ S ) ) ) ) e. J ) |
| 13 | 3 12 | eqeltrd | |- ( ( J e. Top /\ S C_ X ) -> ( X \ ( ( cls ` J ) ` S ) ) e. J ) |