This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A necessary and sufficient condition (that holds when T is a Hermitian operator) for an eigenvalue B to be real. Generalization of Equation 1.30 of Hughes p. 49. (Contributed by NM, 19-Mar-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eigre | |- ( ( ( A e. ~H /\ B e. CC ) /\ ( ( T ` A ) = ( B .h A ) /\ A =/= 0h ) ) -> ( ( A .ih ( T ` A ) ) = ( ( T ` A ) .ih A ) <-> B e. RR ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | |- ( A = if ( A e. ~H , A , 0h ) -> ( T ` A ) = ( T ` if ( A e. ~H , A , 0h ) ) ) |
|
| 2 | oveq2 | |- ( A = if ( A e. ~H , A , 0h ) -> ( B .h A ) = ( B .h if ( A e. ~H , A , 0h ) ) ) |
|
| 3 | 1 2 | eqeq12d | |- ( A = if ( A e. ~H , A , 0h ) -> ( ( T ` A ) = ( B .h A ) <-> ( T ` if ( A e. ~H , A , 0h ) ) = ( B .h if ( A e. ~H , A , 0h ) ) ) ) |
| 4 | neeq1 | |- ( A = if ( A e. ~H , A , 0h ) -> ( A =/= 0h <-> if ( A e. ~H , A , 0h ) =/= 0h ) ) |
|
| 5 | 3 4 | anbi12d | |- ( A = if ( A e. ~H , A , 0h ) -> ( ( ( T ` A ) = ( B .h A ) /\ A =/= 0h ) <-> ( ( T ` if ( A e. ~H , A , 0h ) ) = ( B .h if ( A e. ~H , A , 0h ) ) /\ if ( A e. ~H , A , 0h ) =/= 0h ) ) ) |
| 6 | id | |- ( A = if ( A e. ~H , A , 0h ) -> A = if ( A e. ~H , A , 0h ) ) |
|
| 7 | 6 1 | oveq12d | |- ( A = if ( A e. ~H , A , 0h ) -> ( A .ih ( T ` A ) ) = ( if ( A e. ~H , A , 0h ) .ih ( T ` if ( A e. ~H , A , 0h ) ) ) ) |
| 8 | 1 6 | oveq12d | |- ( A = if ( A e. ~H , A , 0h ) -> ( ( T ` A ) .ih A ) = ( ( T ` if ( A e. ~H , A , 0h ) ) .ih if ( A e. ~H , A , 0h ) ) ) |
| 9 | 7 8 | eqeq12d | |- ( A = if ( A e. ~H , A , 0h ) -> ( ( A .ih ( T ` A ) ) = ( ( T ` A ) .ih A ) <-> ( if ( A e. ~H , A , 0h ) .ih ( T ` if ( A e. ~H , A , 0h ) ) ) = ( ( T ` if ( A e. ~H , A , 0h ) ) .ih if ( A e. ~H , A , 0h ) ) ) ) |
| 10 | 9 | bibi1d | |- ( A = if ( A e. ~H , A , 0h ) -> ( ( ( A .ih ( T ` A ) ) = ( ( T ` A ) .ih A ) <-> B e. RR ) <-> ( ( if ( A e. ~H , A , 0h ) .ih ( T ` if ( A e. ~H , A , 0h ) ) ) = ( ( T ` if ( A e. ~H , A , 0h ) ) .ih if ( A e. ~H , A , 0h ) ) <-> B e. RR ) ) ) |
| 11 | 5 10 | imbi12d | |- ( A = if ( A e. ~H , A , 0h ) -> ( ( ( ( T ` A ) = ( B .h A ) /\ A =/= 0h ) -> ( ( A .ih ( T ` A ) ) = ( ( T ` A ) .ih A ) <-> B e. RR ) ) <-> ( ( ( T ` if ( A e. ~H , A , 0h ) ) = ( B .h if ( A e. ~H , A , 0h ) ) /\ if ( A e. ~H , A , 0h ) =/= 0h ) -> ( ( if ( A e. ~H , A , 0h ) .ih ( T ` if ( A e. ~H , A , 0h ) ) ) = ( ( T ` if ( A e. ~H , A , 0h ) ) .ih if ( A e. ~H , A , 0h ) ) <-> B e. RR ) ) ) ) |
| 12 | oveq1 | |- ( B = if ( B e. CC , B , 0 ) -> ( B .h if ( A e. ~H , A , 0h ) ) = ( if ( B e. CC , B , 0 ) .h if ( A e. ~H , A , 0h ) ) ) |
|
| 13 | 12 | eqeq2d | |- ( B = if ( B e. CC , B , 0 ) -> ( ( T ` if ( A e. ~H , A , 0h ) ) = ( B .h if ( A e. ~H , A , 0h ) ) <-> ( T ` if ( A e. ~H , A , 0h ) ) = ( if ( B e. CC , B , 0 ) .h if ( A e. ~H , A , 0h ) ) ) ) |
| 14 | 13 | anbi1d | |- ( B = if ( B e. CC , B , 0 ) -> ( ( ( T ` if ( A e. ~H , A , 0h ) ) = ( B .h if ( A e. ~H , A , 0h ) ) /\ if ( A e. ~H , A , 0h ) =/= 0h ) <-> ( ( T ` if ( A e. ~H , A , 0h ) ) = ( if ( B e. CC , B , 0 ) .h if ( A e. ~H , A , 0h ) ) /\ if ( A e. ~H , A , 0h ) =/= 0h ) ) ) |
| 15 | eleq1 | |- ( B = if ( B e. CC , B , 0 ) -> ( B e. RR <-> if ( B e. CC , B , 0 ) e. RR ) ) |
|
| 16 | 15 | bibi2d | |- ( B = if ( B e. CC , B , 0 ) -> ( ( ( if ( A e. ~H , A , 0h ) .ih ( T ` if ( A e. ~H , A , 0h ) ) ) = ( ( T ` if ( A e. ~H , A , 0h ) ) .ih if ( A e. ~H , A , 0h ) ) <-> B e. RR ) <-> ( ( if ( A e. ~H , A , 0h ) .ih ( T ` if ( A e. ~H , A , 0h ) ) ) = ( ( T ` if ( A e. ~H , A , 0h ) ) .ih if ( A e. ~H , A , 0h ) ) <-> if ( B e. CC , B , 0 ) e. RR ) ) ) |
| 17 | 14 16 | imbi12d | |- ( B = if ( B e. CC , B , 0 ) -> ( ( ( ( T ` if ( A e. ~H , A , 0h ) ) = ( B .h if ( A e. ~H , A , 0h ) ) /\ if ( A e. ~H , A , 0h ) =/= 0h ) -> ( ( if ( A e. ~H , A , 0h ) .ih ( T ` if ( A e. ~H , A , 0h ) ) ) = ( ( T ` if ( A e. ~H , A , 0h ) ) .ih if ( A e. ~H , A , 0h ) ) <-> B e. RR ) ) <-> ( ( ( T ` if ( A e. ~H , A , 0h ) ) = ( if ( B e. CC , B , 0 ) .h if ( A e. ~H , A , 0h ) ) /\ if ( A e. ~H , A , 0h ) =/= 0h ) -> ( ( if ( A e. ~H , A , 0h ) .ih ( T ` if ( A e. ~H , A , 0h ) ) ) = ( ( T ` if ( A e. ~H , A , 0h ) ) .ih if ( A e. ~H , A , 0h ) ) <-> if ( B e. CC , B , 0 ) e. RR ) ) ) ) |
| 18 | ifhvhv0 | |- if ( A e. ~H , A , 0h ) e. ~H |
|
| 19 | 0cn | |- 0 e. CC |
|
| 20 | 19 | elimel | |- if ( B e. CC , B , 0 ) e. CC |
| 21 | 18 20 | eigrei | |- ( ( ( T ` if ( A e. ~H , A , 0h ) ) = ( if ( B e. CC , B , 0 ) .h if ( A e. ~H , A , 0h ) ) /\ if ( A e. ~H , A , 0h ) =/= 0h ) -> ( ( if ( A e. ~H , A , 0h ) .ih ( T ` if ( A e. ~H , A , 0h ) ) ) = ( ( T ` if ( A e. ~H , A , 0h ) ) .ih if ( A e. ~H , A , 0h ) ) <-> if ( B e. CC , B , 0 ) e. RR ) ) |
| 22 | 11 17 21 | dedth2h | |- ( ( A e. ~H /\ B e. CC ) -> ( ( ( T ` A ) = ( B .h A ) /\ A =/= 0h ) -> ( ( A .ih ( T ` A ) ) = ( ( T ` A ) .ih A ) <-> B e. RR ) ) ) |
| 23 | 22 | imp | |- ( ( ( A e. ~H /\ B e. CC ) /\ ( ( T ` A ) = ( B .h A ) /\ A =/= 0h ) ) -> ( ( A .ih ( T ` A ) ) = ( ( T ` A ) .ih A ) <-> B e. RR ) ) |