This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The monoid of endofunctions on a class A is a semigroup. (Contributed by AV, 28-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | efmndmgm.g | |- G = ( EndoFMnd ` A ) |
|
| Assertion | efmndsgrp | |- G e. Smgrp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efmndmgm.g | |- G = ( EndoFMnd ` A ) |
|
| 2 | 1 | efmndmgm | |- G e. Mgm |
| 3 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 4 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 5 | 1 3 4 | efmndcl | |- ( ( x e. ( Base ` G ) /\ y e. ( Base ` G ) ) -> ( x ( +g ` G ) y ) e. ( Base ` G ) ) |
| 6 | 1 3 4 | efmndov | |- ( ( x e. ( Base ` G ) /\ y e. ( Base ` G ) ) -> ( x ( +g ` G ) y ) = ( x o. y ) ) |
| 7 | 5 6 | symggrplem | |- ( ( f e. ( Base ` G ) /\ g e. ( Base ` G ) /\ h e. ( Base ` G ) ) -> ( ( f ( +g ` G ) g ) ( +g ` G ) h ) = ( f ( +g ` G ) ( g ( +g ` G ) h ) ) ) |
| 8 | 7 | rgen3 | |- A. f e. ( Base ` G ) A. g e. ( Base ` G ) A. h e. ( Base ` G ) ( ( f ( +g ` G ) g ) ( +g ` G ) h ) = ( f ( +g ` G ) ( g ( +g ` G ) h ) ) |
| 9 | 3 4 | issgrp | |- ( G e. Smgrp <-> ( G e. Mgm /\ A. f e. ( Base ` G ) A. g e. ( Base ` G ) A. h e. ( Base ` G ) ( ( f ( +g ` G ) g ) ( +g ` G ) h ) = ( f ( +g ` G ) ( g ( +g ` G ) h ) ) ) ) |
| 10 | 2 8 9 | mpbir2an | |- G e. Smgrp |