This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for efgval . (Contributed by Mario Carneiro, 27-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | efgval.w | |- W = ( _I ` Word ( I X. 2o ) ) |
|
| Assertion | efglem | |- E. r ( r Er W /\ A. x e. W A. n e. ( 0 ... ( # ` x ) ) A. y e. I A. z e. 2o x r ( x splice <. n , n , <" <. y , z >. <. y , ( 1o \ z ) >. "> >. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efgval.w | |- W = ( _I ` Word ( I X. 2o ) ) |
|
| 2 | xpider | |- ( W X. W ) Er W |
|
| 3 | simpll | |- ( ( ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) /\ ( y e. I /\ z e. 2o ) ) -> x e. W ) |
|
| 4 | fviss | |- ( _I ` Word ( I X. 2o ) ) C_ Word ( I X. 2o ) |
|
| 5 | 1 4 | eqsstri | |- W C_ Word ( I X. 2o ) |
| 6 | 5 3 | sselid | |- ( ( ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) /\ ( y e. I /\ z e. 2o ) ) -> x e. Word ( I X. 2o ) ) |
| 7 | opelxpi | |- ( ( y e. I /\ z e. 2o ) -> <. y , z >. e. ( I X. 2o ) ) |
|
| 8 | 7 | adantl | |- ( ( ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) /\ ( y e. I /\ z e. 2o ) ) -> <. y , z >. e. ( I X. 2o ) ) |
| 9 | 2oconcl | |- ( z e. 2o -> ( 1o \ z ) e. 2o ) |
|
| 10 | opelxpi | |- ( ( y e. I /\ ( 1o \ z ) e. 2o ) -> <. y , ( 1o \ z ) >. e. ( I X. 2o ) ) |
|
| 11 | 9 10 | sylan2 | |- ( ( y e. I /\ z e. 2o ) -> <. y , ( 1o \ z ) >. e. ( I X. 2o ) ) |
| 12 | 11 | adantl | |- ( ( ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) /\ ( y e. I /\ z e. 2o ) ) -> <. y , ( 1o \ z ) >. e. ( I X. 2o ) ) |
| 13 | 8 12 | s2cld | |- ( ( ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) /\ ( y e. I /\ z e. 2o ) ) -> <" <. y , z >. <. y , ( 1o \ z ) >. "> e. Word ( I X. 2o ) ) |
| 14 | splcl | |- ( ( x e. Word ( I X. 2o ) /\ <" <. y , z >. <. y , ( 1o \ z ) >. "> e. Word ( I X. 2o ) ) -> ( x splice <. n , n , <" <. y , z >. <. y , ( 1o \ z ) >. "> >. ) e. Word ( I X. 2o ) ) |
|
| 15 | 6 13 14 | syl2anc | |- ( ( ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) /\ ( y e. I /\ z e. 2o ) ) -> ( x splice <. n , n , <" <. y , z >. <. y , ( 1o \ z ) >. "> >. ) e. Word ( I X. 2o ) ) |
| 16 | 1 | efgrcl | |- ( x e. W -> ( I e. _V /\ W = Word ( I X. 2o ) ) ) |
| 17 | 16 | simprd | |- ( x e. W -> W = Word ( I X. 2o ) ) |
| 18 | 17 | ad2antrr | |- ( ( ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) /\ ( y e. I /\ z e. 2o ) ) -> W = Word ( I X. 2o ) ) |
| 19 | 15 18 | eleqtrrd | |- ( ( ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) /\ ( y e. I /\ z e. 2o ) ) -> ( x splice <. n , n , <" <. y , z >. <. y , ( 1o \ z ) >. "> >. ) e. W ) |
| 20 | brxp | |- ( x ( W X. W ) ( x splice <. n , n , <" <. y , z >. <. y , ( 1o \ z ) >. "> >. ) <-> ( x e. W /\ ( x splice <. n , n , <" <. y , z >. <. y , ( 1o \ z ) >. "> >. ) e. W ) ) |
|
| 21 | 3 19 20 | sylanbrc | |- ( ( ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) /\ ( y e. I /\ z e. 2o ) ) -> x ( W X. W ) ( x splice <. n , n , <" <. y , z >. <. y , ( 1o \ z ) >. "> >. ) ) |
| 22 | 21 | ralrimivva | |- ( ( x e. W /\ n e. ( 0 ... ( # ` x ) ) ) -> A. y e. I A. z e. 2o x ( W X. W ) ( x splice <. n , n , <" <. y , z >. <. y , ( 1o \ z ) >. "> >. ) ) |
| 23 | 22 | rgen2 | |- A. x e. W A. n e. ( 0 ... ( # ` x ) ) A. y e. I A. z e. 2o x ( W X. W ) ( x splice <. n , n , <" <. y , z >. <. y , ( 1o \ z ) >. "> >. ) |
| 24 | 1 | fvexi | |- W e. _V |
| 25 | 24 24 | xpex | |- ( W X. W ) e. _V |
| 26 | ereq1 | |- ( r = ( W X. W ) -> ( r Er W <-> ( W X. W ) Er W ) ) |
|
| 27 | breq | |- ( r = ( W X. W ) -> ( x r ( x splice <. n , n , <" <. y , z >. <. y , ( 1o \ z ) >. "> >. ) <-> x ( W X. W ) ( x splice <. n , n , <" <. y , z >. <. y , ( 1o \ z ) >. "> >. ) ) ) |
|
| 28 | 27 | 2ralbidv | |- ( r = ( W X. W ) -> ( A. y e. I A. z e. 2o x r ( x splice <. n , n , <" <. y , z >. <. y , ( 1o \ z ) >. "> >. ) <-> A. y e. I A. z e. 2o x ( W X. W ) ( x splice <. n , n , <" <. y , z >. <. y , ( 1o \ z ) >. "> >. ) ) ) |
| 29 | 28 | 2ralbidv | |- ( r = ( W X. W ) -> ( A. x e. W A. n e. ( 0 ... ( # ` x ) ) A. y e. I A. z e. 2o x r ( x splice <. n , n , <" <. y , z >. <. y , ( 1o \ z ) >. "> >. ) <-> A. x e. W A. n e. ( 0 ... ( # ` x ) ) A. y e. I A. z e. 2o x ( W X. W ) ( x splice <. n , n , <" <. y , z >. <. y , ( 1o \ z ) >. "> >. ) ) ) |
| 30 | 26 29 | anbi12d | |- ( r = ( W X. W ) -> ( ( r Er W /\ A. x e. W A. n e. ( 0 ... ( # ` x ) ) A. y e. I A. z e. 2o x r ( x splice <. n , n , <" <. y , z >. <. y , ( 1o \ z ) >. "> >. ) ) <-> ( ( W X. W ) Er W /\ A. x e. W A. n e. ( 0 ... ( # ` x ) ) A. y e. I A. z e. 2o x ( W X. W ) ( x splice <. n , n , <" <. y , z >. <. y , ( 1o \ z ) >. "> >. ) ) ) ) |
| 31 | 25 30 | spcev | |- ( ( ( W X. W ) Er W /\ A. x e. W A. n e. ( 0 ... ( # ` x ) ) A. y e. I A. z e. 2o x ( W X. W ) ( x splice <. n , n , <" <. y , z >. <. y , ( 1o \ z ) >. "> >. ) ) -> E. r ( r Er W /\ A. x e. W A. n e. ( 0 ... ( # ` x ) ) A. y e. I A. z e. 2o x r ( x splice <. n , n , <" <. y , z >. <. y , ( 1o \ z ) >. "> >. ) ) ) |
| 32 | 2 23 31 | mp2an | |- E. r ( r Er W /\ A. x e. W A. n e. ( 0 ... ( # ` x ) ) A. y e. I A. z e. 2o x r ( x splice <. n , n , <" <. y , z >. <. y , ( 1o \ z ) >. "> >. ) ) |