This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A Cartesian square is an equivalence relation (in general, it is not a poset). (Contributed by FL, 31-Jul-2009) (Revised by Mario Carneiro, 12-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xpider | |- ( A X. A ) Er A |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relxp | |- Rel ( A X. A ) |
|
| 2 | dmxpid | |- dom ( A X. A ) = A |
|
| 3 | cnvxp | |- `' ( A X. A ) = ( A X. A ) |
|
| 4 | xpidtr | |- ( ( A X. A ) o. ( A X. A ) ) C_ ( A X. A ) |
|
| 5 | uneq1 | |- ( `' ( A X. A ) = ( A X. A ) -> ( `' ( A X. A ) u. ( A X. A ) ) = ( ( A X. A ) u. ( A X. A ) ) ) |
|
| 6 | unss2 | |- ( ( ( A X. A ) o. ( A X. A ) ) C_ ( A X. A ) -> ( `' ( A X. A ) u. ( ( A X. A ) o. ( A X. A ) ) ) C_ ( `' ( A X. A ) u. ( A X. A ) ) ) |
|
| 7 | unidm | |- ( ( A X. A ) u. ( A X. A ) ) = ( A X. A ) |
|
| 8 | eqtr | |- ( ( ( `' ( A X. A ) u. ( A X. A ) ) = ( ( A X. A ) u. ( A X. A ) ) /\ ( ( A X. A ) u. ( A X. A ) ) = ( A X. A ) ) -> ( `' ( A X. A ) u. ( A X. A ) ) = ( A X. A ) ) |
|
| 9 | sseq2 | |- ( ( `' ( A X. A ) u. ( A X. A ) ) = ( A X. A ) -> ( ( `' ( A X. A ) u. ( ( A X. A ) o. ( A X. A ) ) ) C_ ( `' ( A X. A ) u. ( A X. A ) ) <-> ( `' ( A X. A ) u. ( ( A X. A ) o. ( A X. A ) ) ) C_ ( A X. A ) ) ) |
|
| 10 | 9 | biimpd | |- ( ( `' ( A X. A ) u. ( A X. A ) ) = ( A X. A ) -> ( ( `' ( A X. A ) u. ( ( A X. A ) o. ( A X. A ) ) ) C_ ( `' ( A X. A ) u. ( A X. A ) ) -> ( `' ( A X. A ) u. ( ( A X. A ) o. ( A X. A ) ) ) C_ ( A X. A ) ) ) |
| 11 | 8 10 | syl | |- ( ( ( `' ( A X. A ) u. ( A X. A ) ) = ( ( A X. A ) u. ( A X. A ) ) /\ ( ( A X. A ) u. ( A X. A ) ) = ( A X. A ) ) -> ( ( `' ( A X. A ) u. ( ( A X. A ) o. ( A X. A ) ) ) C_ ( `' ( A X. A ) u. ( A X. A ) ) -> ( `' ( A X. A ) u. ( ( A X. A ) o. ( A X. A ) ) ) C_ ( A X. A ) ) ) |
| 12 | 7 11 | mpan2 | |- ( ( `' ( A X. A ) u. ( A X. A ) ) = ( ( A X. A ) u. ( A X. A ) ) -> ( ( `' ( A X. A ) u. ( ( A X. A ) o. ( A X. A ) ) ) C_ ( `' ( A X. A ) u. ( A X. A ) ) -> ( `' ( A X. A ) u. ( ( A X. A ) o. ( A X. A ) ) ) C_ ( A X. A ) ) ) |
| 13 | 5 6 12 | syl2im | |- ( `' ( A X. A ) = ( A X. A ) -> ( ( ( A X. A ) o. ( A X. A ) ) C_ ( A X. A ) -> ( `' ( A X. A ) u. ( ( A X. A ) o. ( A X. A ) ) ) C_ ( A X. A ) ) ) |
| 14 | 3 4 13 | mp2 | |- ( `' ( A X. A ) u. ( ( A X. A ) o. ( A X. A ) ) ) C_ ( A X. A ) |
| 15 | df-er | |- ( ( A X. A ) Er A <-> ( Rel ( A X. A ) /\ dom ( A X. A ) = A /\ ( `' ( A X. A ) u. ( ( A X. A ) o. ( A X. A ) ) ) C_ ( A X. A ) ) ) |
|
| 16 | 1 2 14 15 | mpbir3an | |- ( A X. A ) Er A |