This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subtraction rule for everywhere-differentiable functions. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvsubf.s | |- ( ph -> S e. { RR , CC } ) |
|
| dvsubf.f | |- ( ph -> F : X --> CC ) |
||
| dvsubf.g | |- ( ph -> G : X --> CC ) |
||
| dvsubf.fdv | |- ( ph -> dom ( S _D F ) = X ) |
||
| dvsubf.gdv | |- ( ph -> dom ( S _D G ) = X ) |
||
| Assertion | dvsubf | |- ( ph -> ( S _D ( F oF - G ) ) = ( ( S _D F ) oF - ( S _D G ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvsubf.s | |- ( ph -> S e. { RR , CC } ) |
|
| 2 | dvsubf.f | |- ( ph -> F : X --> CC ) |
|
| 3 | dvsubf.g | |- ( ph -> G : X --> CC ) |
|
| 4 | dvsubf.fdv | |- ( ph -> dom ( S _D F ) = X ) |
|
| 5 | dvsubf.gdv | |- ( ph -> dom ( S _D G ) = X ) |
|
| 6 | 2 | ffvelcdmda | |- ( ( ph /\ x e. X ) -> ( F ` x ) e. CC ) |
| 7 | dvfg | |- ( S e. { RR , CC } -> ( S _D F ) : dom ( S _D F ) --> CC ) |
|
| 8 | 1 7 | syl | |- ( ph -> ( S _D F ) : dom ( S _D F ) --> CC ) |
| 9 | 4 | feq2d | |- ( ph -> ( ( S _D F ) : dom ( S _D F ) --> CC <-> ( S _D F ) : X --> CC ) ) |
| 10 | 8 9 | mpbid | |- ( ph -> ( S _D F ) : X --> CC ) |
| 11 | 10 | ffvelcdmda | |- ( ( ph /\ x e. X ) -> ( ( S _D F ) ` x ) e. CC ) |
| 12 | 2 | feqmptd | |- ( ph -> F = ( x e. X |-> ( F ` x ) ) ) |
| 13 | 12 | oveq2d | |- ( ph -> ( S _D F ) = ( S _D ( x e. X |-> ( F ` x ) ) ) ) |
| 14 | 10 | feqmptd | |- ( ph -> ( S _D F ) = ( x e. X |-> ( ( S _D F ) ` x ) ) ) |
| 15 | 13 14 | eqtr3d | |- ( ph -> ( S _D ( x e. X |-> ( F ` x ) ) ) = ( x e. X |-> ( ( S _D F ) ` x ) ) ) |
| 16 | 3 | ffvelcdmda | |- ( ( ph /\ x e. X ) -> ( G ` x ) e. CC ) |
| 17 | dvfg | |- ( S e. { RR , CC } -> ( S _D G ) : dom ( S _D G ) --> CC ) |
|
| 18 | 1 17 | syl | |- ( ph -> ( S _D G ) : dom ( S _D G ) --> CC ) |
| 19 | 5 | feq2d | |- ( ph -> ( ( S _D G ) : dom ( S _D G ) --> CC <-> ( S _D G ) : X --> CC ) ) |
| 20 | 18 19 | mpbid | |- ( ph -> ( S _D G ) : X --> CC ) |
| 21 | 20 | ffvelcdmda | |- ( ( ph /\ x e. X ) -> ( ( S _D G ) ` x ) e. CC ) |
| 22 | 3 | feqmptd | |- ( ph -> G = ( x e. X |-> ( G ` x ) ) ) |
| 23 | 22 | oveq2d | |- ( ph -> ( S _D G ) = ( S _D ( x e. X |-> ( G ` x ) ) ) ) |
| 24 | 20 | feqmptd | |- ( ph -> ( S _D G ) = ( x e. X |-> ( ( S _D G ) ` x ) ) ) |
| 25 | 23 24 | eqtr3d | |- ( ph -> ( S _D ( x e. X |-> ( G ` x ) ) ) = ( x e. X |-> ( ( S _D G ) ` x ) ) ) |
| 26 | 1 6 11 15 16 21 25 | dvmptsub | |- ( ph -> ( S _D ( x e. X |-> ( ( F ` x ) - ( G ` x ) ) ) ) = ( x e. X |-> ( ( ( S _D F ) ` x ) - ( ( S _D G ) ` x ) ) ) ) |
| 27 | ovex | |- ( S _D F ) e. _V |
|
| 28 | 27 | dmex | |- dom ( S _D F ) e. _V |
| 29 | 4 28 | eqeltrrdi | |- ( ph -> X e. _V ) |
| 30 | 29 6 16 12 22 | offval2 | |- ( ph -> ( F oF - G ) = ( x e. X |-> ( ( F ` x ) - ( G ` x ) ) ) ) |
| 31 | 30 | oveq2d | |- ( ph -> ( S _D ( F oF - G ) ) = ( S _D ( x e. X |-> ( ( F ` x ) - ( G ` x ) ) ) ) ) |
| 32 | 29 11 21 14 24 | offval2 | |- ( ph -> ( ( S _D F ) oF - ( S _D G ) ) = ( x e. X |-> ( ( ( S _D F ) ` x ) - ( ( S _D G ) ` x ) ) ) ) |
| 33 | 26 31 32 | 3eqtr4d | |- ( ph -> ( S _D ( F oF - G ) ) = ( ( S _D F ) oF - ( S _D G ) ) ) |