This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Division of a nonnegative number by a positive number. (Contributed by NM, 28-Sep-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ge0div | |- ( ( A e. RR /\ B e. RR /\ 0 < B ) -> ( 0 <_ A <-> 0 <_ ( A / B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re | |- 0 e. RR |
|
| 2 | lediv1 | |- ( ( 0 e. RR /\ A e. RR /\ ( B e. RR /\ 0 < B ) ) -> ( 0 <_ A <-> ( 0 / B ) <_ ( A / B ) ) ) |
|
| 3 | 1 2 | mp3an1 | |- ( ( A e. RR /\ ( B e. RR /\ 0 < B ) ) -> ( 0 <_ A <-> ( 0 / B ) <_ ( A / B ) ) ) |
| 4 | 3 | 3impb | |- ( ( A e. RR /\ B e. RR /\ 0 < B ) -> ( 0 <_ A <-> ( 0 / B ) <_ ( A / B ) ) ) |
| 5 | recn | |- ( B e. RR -> B e. CC ) |
|
| 6 | gt0ne0 | |- ( ( B e. RR /\ 0 < B ) -> B =/= 0 ) |
|
| 7 | div0 | |- ( ( B e. CC /\ B =/= 0 ) -> ( 0 / B ) = 0 ) |
|
| 8 | 5 6 7 | syl2an2r | |- ( ( B e. RR /\ 0 < B ) -> ( 0 / B ) = 0 ) |
| 9 | 8 | breq1d | |- ( ( B e. RR /\ 0 < B ) -> ( ( 0 / B ) <_ ( A / B ) <-> 0 <_ ( A / B ) ) ) |
| 10 | 9 | 3adant1 | |- ( ( A e. RR /\ B e. RR /\ 0 < B ) -> ( ( 0 / B ) <_ ( A / B ) <-> 0 <_ ( A / B ) ) ) |
| 11 | 4 10 | bitrd | |- ( ( A e. RR /\ B e. RR /\ 0 < B ) -> ( 0 <_ A <-> 0 <_ ( A / B ) ) ) |