This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A prime number is either 2 or odd. (Contributed by AV, 19-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prm2orodd | |- ( P e. Prime -> ( P = 2 \/ -. 2 || P ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2nn | |- 2 e. NN |
|
| 2 | dvdsprime | |- ( ( P e. Prime /\ 2 e. NN ) -> ( 2 || P <-> ( 2 = P \/ 2 = 1 ) ) ) |
|
| 3 | 1 2 | mpan2 | |- ( P e. Prime -> ( 2 || P <-> ( 2 = P \/ 2 = 1 ) ) ) |
| 4 | eqcom | |- ( 2 = P <-> P = 2 ) |
|
| 5 | 4 | biimpi | |- ( 2 = P -> P = 2 ) |
| 6 | 1ne2 | |- 1 =/= 2 |
|
| 7 | necom | |- ( 1 =/= 2 <-> 2 =/= 1 ) |
|
| 8 | eqneqall | |- ( 2 = 1 -> ( 2 =/= 1 -> P = 2 ) ) |
|
| 9 | 8 | com12 | |- ( 2 =/= 1 -> ( 2 = 1 -> P = 2 ) ) |
| 10 | 7 9 | sylbi | |- ( 1 =/= 2 -> ( 2 = 1 -> P = 2 ) ) |
| 11 | 6 10 | ax-mp | |- ( 2 = 1 -> P = 2 ) |
| 12 | 5 11 | jaoi | |- ( ( 2 = P \/ 2 = 1 ) -> P = 2 ) |
| 13 | 3 12 | biimtrdi | |- ( P e. Prime -> ( 2 || P -> P = 2 ) ) |
| 14 | 13 | con3d | |- ( P e. Prime -> ( -. P = 2 -> -. 2 || P ) ) |
| 15 | 14 | orrd | |- ( P e. Prime -> ( P = 2 \/ -. 2 || P ) ) |