This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A positive integer which is divisible by all elements of a set of integers bounds the least common multiple of the set. (Contributed by AV, 22-Aug-2020) (Proof shortened by AV, 16-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lcmfledvds | |- ( ( Z C_ ZZ /\ Z e. Fin /\ 0 e/ Z ) -> ( ( K e. NN /\ A. m e. Z m || K ) -> ( _lcm ` Z ) <_ K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcmfn0val | |- ( ( Z C_ ZZ /\ Z e. Fin /\ 0 e/ Z ) -> ( _lcm ` Z ) = inf ( { k e. NN | A. m e. Z m || k } , RR , < ) ) |
|
| 2 | 1 | adantr | |- ( ( ( Z C_ ZZ /\ Z e. Fin /\ 0 e/ Z ) /\ ( K e. NN /\ A. m e. Z m || K ) ) -> ( _lcm ` Z ) = inf ( { k e. NN | A. m e. Z m || k } , RR , < ) ) |
| 3 | ssrab2 | |- { k e. NN | A. m e. Z m || k } C_ NN |
|
| 4 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 5 | 3 4 | sseqtri | |- { k e. NN | A. m e. Z m || k } C_ ( ZZ>= ` 1 ) |
| 6 | simpr | |- ( ( Z C_ ZZ /\ ( K e. NN /\ A. m e. Z m || K ) ) -> ( K e. NN /\ A. m e. Z m || K ) ) |
|
| 7 | breq2 | |- ( k = K -> ( m || k <-> m || K ) ) |
|
| 8 | 7 | ralbidv | |- ( k = K -> ( A. m e. Z m || k <-> A. m e. Z m || K ) ) |
| 9 | 8 | elrab | |- ( K e. { k e. NN | A. m e. Z m || k } <-> ( K e. NN /\ A. m e. Z m || K ) ) |
| 10 | 6 9 | sylibr | |- ( ( Z C_ ZZ /\ ( K e. NN /\ A. m e. Z m || K ) ) -> K e. { k e. NN | A. m e. Z m || k } ) |
| 11 | infssuzle | |- ( ( { k e. NN | A. m e. Z m || k } C_ ( ZZ>= ` 1 ) /\ K e. { k e. NN | A. m e. Z m || k } ) -> inf ( { k e. NN | A. m e. Z m || k } , RR , < ) <_ K ) |
|
| 12 | 5 10 11 | sylancr | |- ( ( Z C_ ZZ /\ ( K e. NN /\ A. m e. Z m || K ) ) -> inf ( { k e. NN | A. m e. Z m || k } , RR , < ) <_ K ) |
| 13 | 12 | 3ad2antl1 | |- ( ( ( Z C_ ZZ /\ Z e. Fin /\ 0 e/ Z ) /\ ( K e. NN /\ A. m e. Z m || K ) ) -> inf ( { k e. NN | A. m e. Z m || k } , RR , < ) <_ K ) |
| 14 | 2 13 | eqbrtrd | |- ( ( ( Z C_ ZZ /\ Z e. Fin /\ 0 e/ Z ) /\ ( K e. NN /\ A. m e. Z m || K ) ) -> ( _lcm ` Z ) <_ K ) |
| 15 | 14 | ex | |- ( ( Z C_ ZZ /\ Z e. Fin /\ 0 e/ Z ) -> ( ( K e. NN /\ A. m e. Z m || K ) -> ( _lcm ` Z ) <_ K ) ) |