This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for lcmfn0cl and dvdslcmf . (Contributed by AV, 21-Aug-2020) (Proof shortened by AV, 16-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lcmfcllem | |- ( ( Z C_ ZZ /\ Z e. Fin /\ 0 e/ Z ) -> ( _lcm ` Z ) e. { n e. NN | A. m e. Z m || n } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcmfn0val | |- ( ( Z C_ ZZ /\ Z e. Fin /\ 0 e/ Z ) -> ( _lcm ` Z ) = inf ( { n e. NN | A. m e. Z m || n } , RR , < ) ) |
|
| 2 | ssrab2 | |- { n e. NN | A. m e. Z m || n } C_ NN |
|
| 3 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 4 | 2 3 | sseqtri | |- { n e. NN | A. m e. Z m || n } C_ ( ZZ>= ` 1 ) |
| 5 | fissn0dvdsn0 | |- ( ( Z C_ ZZ /\ Z e. Fin /\ 0 e/ Z ) -> { n e. NN | A. m e. Z m || n } =/= (/) ) |
|
| 6 | infssuzcl | |- ( ( { n e. NN | A. m e. Z m || n } C_ ( ZZ>= ` 1 ) /\ { n e. NN | A. m e. Z m || n } =/= (/) ) -> inf ( { n e. NN | A. m e. Z m || n } , RR , < ) e. { n e. NN | A. m e. Z m || n } ) |
|
| 7 | 4 5 6 | sylancr | |- ( ( Z C_ ZZ /\ Z e. Fin /\ 0 e/ Z ) -> inf ( { n e. NN | A. m e. Z m || n } , RR , < ) e. { n e. NN | A. m e. Z m || n } ) |
| 8 | 1 7 | eqeltrd | |- ( ( Z C_ ZZ /\ Z e. Fin /\ 0 e/ Z ) -> ( _lcm ` Z ) e. { n e. NN | A. m e. Z m || n } ) |