This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transfer divisibility to an order constraint on absolute values. (Contributed by Stefan O'Rear, 24-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdsleabs2 | |- ( ( M e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( M || N -> ( abs ` M ) <_ ( abs ` N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zabscl | |- ( M e. ZZ -> ( abs ` M ) e. ZZ ) |
|
| 2 | 1 | 3anim1i | |- ( ( M e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( ( abs ` M ) e. ZZ /\ N e. ZZ /\ N =/= 0 ) ) |
| 3 | 2 | adantr | |- ( ( ( M e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ M || N ) -> ( ( abs ` M ) e. ZZ /\ N e. ZZ /\ N =/= 0 ) ) |
| 4 | absdvdsb | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || N <-> ( abs ` M ) || N ) ) |
|
| 5 | 4 | 3adant3 | |- ( ( M e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( M || N <-> ( abs ` M ) || N ) ) |
| 6 | 5 | biimpa | |- ( ( ( M e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ M || N ) -> ( abs ` M ) || N ) |
| 7 | dvdsleabs | |- ( ( ( abs ` M ) e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( ( abs ` M ) || N -> ( abs ` M ) <_ ( abs ` N ) ) ) |
|
| 8 | 3 6 7 | sylc | |- ( ( ( M e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ M || N ) -> ( abs ` M ) <_ ( abs ` N ) ) |
| 9 | 8 | ex | |- ( ( M e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( M || N -> ( abs ` M ) <_ ( abs ` N ) ) ) |