This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the internal direct product of a family of subgroups. (Contributed by Mario Carneiro, 21-Apr-2016) (Revised by AV, 11-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-dprd | |- DProd = ( g e. Grp , s e. { h | ( h : dom h --> ( SubGrp ` g ) /\ A. x e. dom h ( A. y e. ( dom h \ { x } ) ( h ` x ) C_ ( ( Cntz ` g ) ` ( h ` y ) ) /\ ( ( h ` x ) i^i ( ( mrCls ` ( SubGrp ` g ) ) ` U. ( h " ( dom h \ { x } ) ) ) ) = { ( 0g ` g ) } ) ) } |-> ran ( f e. { h e. X_ x e. dom s ( s ` x ) | h finSupp ( 0g ` g ) } |-> ( g gsum f ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cdprd | |- DProd |
|
| 1 | vg | |- g |
|
| 2 | cgrp | |- Grp |
|
| 3 | vs | |- s |
|
| 4 | vh | |- h |
|
| 5 | 4 | cv | |- h |
| 6 | 5 | cdm | |- dom h |
| 7 | csubg | |- SubGrp |
|
| 8 | 1 | cv | |- g |
| 9 | 8 7 | cfv | |- ( SubGrp ` g ) |
| 10 | 6 9 5 | wf | |- h : dom h --> ( SubGrp ` g ) |
| 11 | vx | |- x |
|
| 12 | vy | |- y |
|
| 13 | 11 | cv | |- x |
| 14 | 13 | csn | |- { x } |
| 15 | 6 14 | cdif | |- ( dom h \ { x } ) |
| 16 | 13 5 | cfv | |- ( h ` x ) |
| 17 | ccntz | |- Cntz |
|
| 18 | 8 17 | cfv | |- ( Cntz ` g ) |
| 19 | 12 | cv | |- y |
| 20 | 19 5 | cfv | |- ( h ` y ) |
| 21 | 20 18 | cfv | |- ( ( Cntz ` g ) ` ( h ` y ) ) |
| 22 | 16 21 | wss | |- ( h ` x ) C_ ( ( Cntz ` g ) ` ( h ` y ) ) |
| 23 | 22 12 15 | wral | |- A. y e. ( dom h \ { x } ) ( h ` x ) C_ ( ( Cntz ` g ) ` ( h ` y ) ) |
| 24 | cmrc | |- mrCls |
|
| 25 | 9 24 | cfv | |- ( mrCls ` ( SubGrp ` g ) ) |
| 26 | 5 15 | cima | |- ( h " ( dom h \ { x } ) ) |
| 27 | 26 | cuni | |- U. ( h " ( dom h \ { x } ) ) |
| 28 | 27 25 | cfv | |- ( ( mrCls ` ( SubGrp ` g ) ) ` U. ( h " ( dom h \ { x } ) ) ) |
| 29 | 16 28 | cin | |- ( ( h ` x ) i^i ( ( mrCls ` ( SubGrp ` g ) ) ` U. ( h " ( dom h \ { x } ) ) ) ) |
| 30 | c0g | |- 0g |
|
| 31 | 8 30 | cfv | |- ( 0g ` g ) |
| 32 | 31 | csn | |- { ( 0g ` g ) } |
| 33 | 29 32 | wceq | |- ( ( h ` x ) i^i ( ( mrCls ` ( SubGrp ` g ) ) ` U. ( h " ( dom h \ { x } ) ) ) ) = { ( 0g ` g ) } |
| 34 | 23 33 | wa | |- ( A. y e. ( dom h \ { x } ) ( h ` x ) C_ ( ( Cntz ` g ) ` ( h ` y ) ) /\ ( ( h ` x ) i^i ( ( mrCls ` ( SubGrp ` g ) ) ` U. ( h " ( dom h \ { x } ) ) ) ) = { ( 0g ` g ) } ) |
| 35 | 34 11 6 | wral | |- A. x e. dom h ( A. y e. ( dom h \ { x } ) ( h ` x ) C_ ( ( Cntz ` g ) ` ( h ` y ) ) /\ ( ( h ` x ) i^i ( ( mrCls ` ( SubGrp ` g ) ) ` U. ( h " ( dom h \ { x } ) ) ) ) = { ( 0g ` g ) } ) |
| 36 | 10 35 | wa | |- ( h : dom h --> ( SubGrp ` g ) /\ A. x e. dom h ( A. y e. ( dom h \ { x } ) ( h ` x ) C_ ( ( Cntz ` g ) ` ( h ` y ) ) /\ ( ( h ` x ) i^i ( ( mrCls ` ( SubGrp ` g ) ) ` U. ( h " ( dom h \ { x } ) ) ) ) = { ( 0g ` g ) } ) ) |
| 37 | 36 4 | cab | |- { h | ( h : dom h --> ( SubGrp ` g ) /\ A. x e. dom h ( A. y e. ( dom h \ { x } ) ( h ` x ) C_ ( ( Cntz ` g ) ` ( h ` y ) ) /\ ( ( h ` x ) i^i ( ( mrCls ` ( SubGrp ` g ) ) ` U. ( h " ( dom h \ { x } ) ) ) ) = { ( 0g ` g ) } ) ) } |
| 38 | vf | |- f |
|
| 39 | 3 | cv | |- s |
| 40 | 39 | cdm | |- dom s |
| 41 | 13 39 | cfv | |- ( s ` x ) |
| 42 | 11 40 41 | cixp | |- X_ x e. dom s ( s ` x ) |
| 43 | cfsupp | |- finSupp |
|
| 44 | 5 31 43 | wbr | |- h finSupp ( 0g ` g ) |
| 45 | 44 4 42 | crab | |- { h e. X_ x e. dom s ( s ` x ) | h finSupp ( 0g ` g ) } |
| 46 | cgsu | |- gsum |
|
| 47 | 38 | cv | |- f |
| 48 | 8 47 46 | co | |- ( g gsum f ) |
| 49 | 38 45 48 | cmpt | |- ( f e. { h e. X_ x e. dom s ( s ` x ) | h finSupp ( 0g ` g ) } |-> ( g gsum f ) ) |
| 50 | 49 | crn | |- ran ( f e. { h e. X_ x e. dom s ( s ` x ) | h finSupp ( 0g ` g ) } |-> ( g gsum f ) ) |
| 51 | 1 3 2 37 50 | cmpo | |- ( g e. Grp , s e. { h | ( h : dom h --> ( SubGrp ` g ) /\ A. x e. dom h ( A. y e. ( dom h \ { x } ) ( h ` x ) C_ ( ( Cntz ` g ) ` ( h ` y ) ) /\ ( ( h ` x ) i^i ( ( mrCls ` ( SubGrp ` g ) ) ` U. ( h " ( dom h \ { x } ) ) ) ) = { ( 0g ` g ) } ) ) } |-> ran ( f e. { h e. X_ x e. dom s ( s ` x ) | h finSupp ( 0g ` g ) } |-> ( g gsum f ) ) ) |
| 52 | 0 51 | wceq | |- DProd = ( g e. Grp , s e. { h | ( h : dom h --> ( SubGrp ` g ) /\ A. x e. dom h ( A. y e. ( dom h \ { x } ) ( h ` x ) C_ ( ( Cntz ` g ) ` ( h ` y ) ) /\ ( ( h ` x ) i^i ( ( mrCls ` ( SubGrp ` g ) ) ` U. ( h " ( dom h \ { x } ) ) ) ) = { ( 0g ` g ) } ) ) } |-> ran ( f e. { h e. X_ x e. dom s ( s ` x ) | h finSupp ( 0g ` g ) } |-> ( g gsum f ) ) ) |