This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rearrange the index set of a direct product family. (Contributed by Mario Carneiro, 25-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dprdf1.1 | ⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) | |
| dprdf1.2 | ⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) | ||
| dprdf1.3 | ⊢ ( 𝜑 → 𝐹 : 𝐽 –1-1→ 𝐼 ) | ||
| Assertion | dprdf1 | ⊢ ( 𝜑 → ( 𝐺 dom DProd ( 𝑆 ∘ 𝐹 ) ∧ ( 𝐺 DProd ( 𝑆 ∘ 𝐹 ) ) ⊆ ( 𝐺 DProd 𝑆 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dprdf1.1 | ⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) | |
| 2 | dprdf1.2 | ⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) | |
| 3 | dprdf1.3 | ⊢ ( 𝜑 → 𝐹 : 𝐽 –1-1→ 𝐼 ) | |
| 4 | f1f | ⊢ ( 𝐹 : 𝐽 –1-1→ 𝐼 → 𝐹 : 𝐽 ⟶ 𝐼 ) | |
| 5 | frn | ⊢ ( 𝐹 : 𝐽 ⟶ 𝐼 → ran 𝐹 ⊆ 𝐼 ) | |
| 6 | 3 4 5 | 3syl | ⊢ ( 𝜑 → ran 𝐹 ⊆ 𝐼 ) |
| 7 | 1 2 6 | dprdres | ⊢ ( 𝜑 → ( 𝐺 dom DProd ( 𝑆 ↾ ran 𝐹 ) ∧ ( 𝐺 DProd ( 𝑆 ↾ ran 𝐹 ) ) ⊆ ( 𝐺 DProd 𝑆 ) ) ) |
| 8 | 7 | simpld | ⊢ ( 𝜑 → 𝐺 dom DProd ( 𝑆 ↾ ran 𝐹 ) ) |
| 9 | 1 2 | dprdf2 | ⊢ ( 𝜑 → 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ) |
| 10 | 9 6 | fssresd | ⊢ ( 𝜑 → ( 𝑆 ↾ ran 𝐹 ) : ran 𝐹 ⟶ ( SubGrp ‘ 𝐺 ) ) |
| 11 | 10 | fdmd | ⊢ ( 𝜑 → dom ( 𝑆 ↾ ran 𝐹 ) = ran 𝐹 ) |
| 12 | f1f1orn | ⊢ ( 𝐹 : 𝐽 –1-1→ 𝐼 → 𝐹 : 𝐽 –1-1-onto→ ran 𝐹 ) | |
| 13 | 3 12 | syl | ⊢ ( 𝜑 → 𝐹 : 𝐽 –1-1-onto→ ran 𝐹 ) |
| 14 | 8 11 13 | dprdf1o | ⊢ ( 𝜑 → ( 𝐺 dom DProd ( ( 𝑆 ↾ ran 𝐹 ) ∘ 𝐹 ) ∧ ( 𝐺 DProd ( ( 𝑆 ↾ ran 𝐹 ) ∘ 𝐹 ) ) = ( 𝐺 DProd ( 𝑆 ↾ ran 𝐹 ) ) ) ) |
| 15 | 14 | simpld | ⊢ ( 𝜑 → 𝐺 dom DProd ( ( 𝑆 ↾ ran 𝐹 ) ∘ 𝐹 ) ) |
| 16 | ssid | ⊢ ran 𝐹 ⊆ ran 𝐹 | |
| 17 | cores | ⊢ ( ran 𝐹 ⊆ ran 𝐹 → ( ( 𝑆 ↾ ran 𝐹 ) ∘ 𝐹 ) = ( 𝑆 ∘ 𝐹 ) ) | |
| 18 | 16 17 | ax-mp | ⊢ ( ( 𝑆 ↾ ran 𝐹 ) ∘ 𝐹 ) = ( 𝑆 ∘ 𝐹 ) |
| 19 | 15 18 | breqtrdi | ⊢ ( 𝜑 → 𝐺 dom DProd ( 𝑆 ∘ 𝐹 ) ) |
| 20 | 18 | oveq2i | ⊢ ( 𝐺 DProd ( ( 𝑆 ↾ ran 𝐹 ) ∘ 𝐹 ) ) = ( 𝐺 DProd ( 𝑆 ∘ 𝐹 ) ) |
| 21 | 14 | simprd | ⊢ ( 𝜑 → ( 𝐺 DProd ( ( 𝑆 ↾ ran 𝐹 ) ∘ 𝐹 ) ) = ( 𝐺 DProd ( 𝑆 ↾ ran 𝐹 ) ) ) |
| 22 | 20 21 | eqtr3id | ⊢ ( 𝜑 → ( 𝐺 DProd ( 𝑆 ∘ 𝐹 ) ) = ( 𝐺 DProd ( 𝑆 ↾ ran 𝐹 ) ) ) |
| 23 | 7 | simprd | ⊢ ( 𝜑 → ( 𝐺 DProd ( 𝑆 ↾ ran 𝐹 ) ) ⊆ ( 𝐺 DProd 𝑆 ) ) |
| 24 | 22 23 | eqsstrd | ⊢ ( 𝜑 → ( 𝐺 DProd ( 𝑆 ∘ 𝐹 ) ) ⊆ ( 𝐺 DProd 𝑆 ) ) |
| 25 | 19 24 | jca | ⊢ ( 𝜑 → ( 𝐺 dom DProd ( 𝑆 ∘ 𝐹 ) ∧ ( 𝐺 DProd ( 𝑆 ∘ 𝐹 ) ) ⊆ ( 𝐺 DProd 𝑆 ) ) ) |