This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain of a one-to-one set function is dominated by its codomain when the latter is a set. This variation of f1domg does not require the Axiom of Replacement nor the Axiom of Power Sets nor the Axiom of Union. (Contributed by BTernaryTau, 7-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1dom4g | |- ( ( ( F e. V /\ A e. W /\ B e. X ) /\ F : A -1-1-> B ) -> A ~<_ B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1eq1 | |- ( f = F -> ( f : A -1-1-> B <-> F : A -1-1-> B ) ) |
|
| 2 | 1 | spcegv | |- ( F e. V -> ( F : A -1-1-> B -> E. f f : A -1-1-> B ) ) |
| 3 | 2 | imp | |- ( ( F e. V /\ F : A -1-1-> B ) -> E. f f : A -1-1-> B ) |
| 4 | 3 | 3ad2antl1 | |- ( ( ( F e. V /\ A e. W /\ B e. X ) /\ F : A -1-1-> B ) -> E. f f : A -1-1-> B ) |
| 5 | brdom2g | |- ( ( A e. W /\ B e. X ) -> ( A ~<_ B <-> E. f f : A -1-1-> B ) ) |
|
| 6 | 5 | 3adant1 | |- ( ( F e. V /\ A e. W /\ B e. X ) -> ( A ~<_ B <-> E. f f : A -1-1-> B ) ) |
| 7 | 6 | adantr | |- ( ( ( F e. V /\ A e. W /\ B e. X ) /\ F : A -1-1-> B ) -> ( A ~<_ B <-> E. f f : A -1-1-> B ) ) |
| 8 | 4 7 | mpbird | |- ( ( ( F e. V /\ A e. W /\ B e. X ) /\ F : A -1-1-> B ) -> A ~<_ B ) |