This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define an enumeration (weak dominance version) of a set from a choice function. (Contributed by Stefan O'Rear, 18-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dnnumch.f | |- F = recs ( ( z e. _V |-> ( G ` ( A \ ran z ) ) ) ) |
|
| dnnumch.a | |- ( ph -> A e. V ) |
||
| dnnumch.g | |- ( ph -> A. y e. ~P A ( y =/= (/) -> ( G ` y ) e. y ) ) |
||
| Assertion | dnnumch2 | |- ( ph -> A C_ ran F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dnnumch.f | |- F = recs ( ( z e. _V |-> ( G ` ( A \ ran z ) ) ) ) |
|
| 2 | dnnumch.a | |- ( ph -> A e. V ) |
|
| 3 | dnnumch.g | |- ( ph -> A. y e. ~P A ( y =/= (/) -> ( G ` y ) e. y ) ) |
|
| 4 | 1 2 3 | dnnumch1 | |- ( ph -> E. x e. On ( F |` x ) : x -1-1-onto-> A ) |
| 5 | f1ofo | |- ( ( F |` x ) : x -1-1-onto-> A -> ( F |` x ) : x -onto-> A ) |
|
| 6 | forn | |- ( ( F |` x ) : x -onto-> A -> ran ( F |` x ) = A ) |
|
| 7 | 5 6 | syl | |- ( ( F |` x ) : x -1-1-onto-> A -> ran ( F |` x ) = A ) |
| 8 | resss | |- ( F |` x ) C_ F |
|
| 9 | rnss | |- ( ( F |` x ) C_ F -> ran ( F |` x ) C_ ran F ) |
|
| 10 | 8 9 | mp1i | |- ( ( F |` x ) : x -1-1-onto-> A -> ran ( F |` x ) C_ ran F ) |
| 11 | 7 10 | eqsstrrd | |- ( ( F |` x ) : x -1-1-onto-> A -> A C_ ran F ) |
| 12 | 11 | a1i | |- ( ph -> ( ( F |` x ) : x -1-1-onto-> A -> A C_ ran F ) ) |
| 13 | 12 | rexlimdvw | |- ( ph -> ( E. x e. On ( F |` x ) : x -1-1-onto-> A -> A C_ ran F ) ) |
| 14 | 4 13 | mpd | |- ( ph -> A C_ ran F ) |