This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Union of two class abstractions. Version of unab using implicit substitution, which does not require ax-8 , ax-10 , ax-12 . (Contributed by GG, 15-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | unabw.1 | |- ( x = y -> ( ph <-> ch ) ) |
|
| unabw.2 | |- ( x = y -> ( ps <-> th ) ) |
||
| Assertion | unabw | |- ( { x | ph } u. { x | ps } ) = { y | ( ch \/ th ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unabw.1 | |- ( x = y -> ( ph <-> ch ) ) |
|
| 2 | unabw.2 | |- ( x = y -> ( ps <-> th ) ) |
|
| 3 | df-un | |- ( { x | ph } u. { x | ps } ) = { y | ( y e. { x | ph } \/ y e. { x | ps } ) } |
|
| 4 | df-clab | |- ( y e. { x | ph } <-> [ y / x ] ph ) |
|
| 5 | 1 | sbievw | |- ( [ y / x ] ph <-> ch ) |
| 6 | 4 5 | bitri | |- ( y e. { x | ph } <-> ch ) |
| 7 | df-clab | |- ( y e. { x | ps } <-> [ y / x ] ps ) |
|
| 8 | 2 | sbievw | |- ( [ y / x ] ps <-> th ) |
| 9 | 7 8 | bitri | |- ( y e. { x | ps } <-> th ) |
| 10 | 6 9 | orbi12i | |- ( ( y e. { x | ph } \/ y e. { x | ps } ) <-> ( ch \/ th ) ) |
| 11 | 10 | abbii | |- { y | ( y e. { x | ph } \/ y e. { x | ps } ) } = { y | ( ch \/ th ) } |
| 12 | 3 11 | eqtri | |- ( { x | ph } u. { x | ps } ) = { y | ( ch \/ th ) } |