This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain of an intersection is included in the intersection of the domains. Theorem 6 of Suppes p. 60. (Contributed by NM, 15-Sep-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dmin | |- dom ( A i^i B ) C_ ( dom A i^i dom B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.40 | |- ( E. y ( <. x , y >. e. A /\ <. x , y >. e. B ) -> ( E. y <. x , y >. e. A /\ E. y <. x , y >. e. B ) ) |
|
| 2 | vex | |- x e. _V |
|
| 3 | 2 | eldm2 | |- ( x e. dom ( A i^i B ) <-> E. y <. x , y >. e. ( A i^i B ) ) |
| 4 | elin | |- ( <. x , y >. e. ( A i^i B ) <-> ( <. x , y >. e. A /\ <. x , y >. e. B ) ) |
|
| 5 | 4 | exbii | |- ( E. y <. x , y >. e. ( A i^i B ) <-> E. y ( <. x , y >. e. A /\ <. x , y >. e. B ) ) |
| 6 | 3 5 | bitri | |- ( x e. dom ( A i^i B ) <-> E. y ( <. x , y >. e. A /\ <. x , y >. e. B ) ) |
| 7 | elin | |- ( x e. ( dom A i^i dom B ) <-> ( x e. dom A /\ x e. dom B ) ) |
|
| 8 | 2 | eldm2 | |- ( x e. dom A <-> E. y <. x , y >. e. A ) |
| 9 | 2 | eldm2 | |- ( x e. dom B <-> E. y <. x , y >. e. B ) |
| 10 | 8 9 | anbi12i | |- ( ( x e. dom A /\ x e. dom B ) <-> ( E. y <. x , y >. e. A /\ E. y <. x , y >. e. B ) ) |
| 11 | 7 10 | bitri | |- ( x e. ( dom A i^i dom B ) <-> ( E. y <. x , y >. e. A /\ E. y <. x , y >. e. B ) ) |
| 12 | 1 6 11 | 3imtr4i | |- ( x e. dom ( A i^i B ) -> x e. ( dom A i^i dom B ) ) |
| 13 | 12 | ssriv | |- dom ( A i^i B ) C_ ( dom A i^i dom B ) |