This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for division and multiplication. (Contributed by Scott Fenton, 7-Jun-2013) (Proof shortened by Fan Zheng, 3-Jul-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dmdcan | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ C e. CC ) -> ( ( A / B ) x. ( C / A ) ) = ( C / B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1l | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ C e. CC ) -> A e. CC ) |
|
| 2 | simp3 | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ C e. CC ) -> C e. CC ) |
|
| 3 | simp1r | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ C e. CC ) -> A =/= 0 ) |
|
| 4 | divcl | |- ( ( C e. CC /\ A e. CC /\ A =/= 0 ) -> ( C / A ) e. CC ) |
|
| 5 | 2 1 3 4 | syl3anc | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ C e. CC ) -> ( C / A ) e. CC ) |
| 6 | simp2l | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ C e. CC ) -> B e. CC ) |
|
| 7 | simp2r | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ C e. CC ) -> B =/= 0 ) |
|
| 8 | div23 | |- ( ( A e. CC /\ ( C / A ) e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( A x. ( C / A ) ) / B ) = ( ( A / B ) x. ( C / A ) ) ) |
|
| 9 | 1 5 6 7 8 | syl112anc | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ C e. CC ) -> ( ( A x. ( C / A ) ) / B ) = ( ( A / B ) x. ( C / A ) ) ) |
| 10 | divcan2 | |- ( ( C e. CC /\ A e. CC /\ A =/= 0 ) -> ( A x. ( C / A ) ) = C ) |
|
| 11 | 2 1 3 10 | syl3anc | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ C e. CC ) -> ( A x. ( C / A ) ) = C ) |
| 12 | 11 | oveq1d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ C e. CC ) -> ( ( A x. ( C / A ) ) / B ) = ( C / B ) ) |
| 13 | 9 12 | eqtr3d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) /\ C e. CC ) -> ( ( A / B ) x. ( C / A ) ) = ( C / B ) ) |