This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for division and multiplication. (Contributed by Scott Fenton, 7-Jun-2013) (Proof shortened by Fan Zheng, 3-Jul-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dmdcan | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 / 𝐵 ) · ( 𝐶 / 𝐴 ) ) = ( 𝐶 / 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1l | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℂ ) → 𝐴 ∈ ℂ ) | |
| 2 | simp3 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℂ ) → 𝐶 ∈ ℂ ) | |
| 3 | simp1r | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℂ ) → 𝐴 ≠ 0 ) | |
| 4 | divcl | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 𝐶 / 𝐴 ) ∈ ℂ ) | |
| 5 | 2 1 3 4 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℂ ) → ( 𝐶 / 𝐴 ) ∈ ℂ ) |
| 6 | simp2l | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℂ ) → 𝐵 ∈ ℂ ) | |
| 7 | simp2r | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℂ ) → 𝐵 ≠ 0 ) | |
| 8 | div23 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐶 / 𝐴 ) ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( 𝐴 · ( 𝐶 / 𝐴 ) ) / 𝐵 ) = ( ( 𝐴 / 𝐵 ) · ( 𝐶 / 𝐴 ) ) ) | |
| 9 | 1 5 6 7 8 | syl112anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 · ( 𝐶 / 𝐴 ) ) / 𝐵 ) = ( ( 𝐴 / 𝐵 ) · ( 𝐶 / 𝐴 ) ) ) |
| 10 | divcan2 | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 𝐴 · ( 𝐶 / 𝐴 ) ) = 𝐶 ) | |
| 11 | 2 1 3 10 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℂ ) → ( 𝐴 · ( 𝐶 / 𝐴 ) ) = 𝐶 ) |
| 12 | 11 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 · ( 𝐶 / 𝐴 ) ) / 𝐵 ) = ( 𝐶 / 𝐵 ) ) |
| 13 | 9 12 | eqtr3d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 / 𝐵 ) · ( 𝐶 / 𝐴 ) ) = ( 𝐶 / 𝐵 ) ) |