This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subtraction of two ratios. (Contributed by Scott Fenton, 22-Apr-2014) (Revised by Mario Carneiro, 2-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divsubdiv | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( A / C ) - ( B / D ) ) = ( ( ( A x. D ) - ( B x. C ) ) / ( C x. D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negcl | |- ( B e. CC -> -u B e. CC ) |
|
| 2 | divadddiv | |- ( ( ( A e. CC /\ -u B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( A / C ) + ( -u B / D ) ) = ( ( ( A x. D ) + ( -u B x. C ) ) / ( C x. D ) ) ) |
|
| 3 | 1 2 | sylanl2 | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( A / C ) + ( -u B / D ) ) = ( ( ( A x. D ) + ( -u B x. C ) ) / ( C x. D ) ) ) |
| 4 | simplr | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> B e. CC ) |
|
| 5 | simprrl | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> D e. CC ) |
|
| 6 | simprrr | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> D =/= 0 ) |
|
| 7 | divneg | |- ( ( B e. CC /\ D e. CC /\ D =/= 0 ) -> -u ( B / D ) = ( -u B / D ) ) |
|
| 8 | 4 5 6 7 | syl3anc | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> -u ( B / D ) = ( -u B / D ) ) |
| 9 | 8 | oveq2d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( A / C ) + -u ( B / D ) ) = ( ( A / C ) + ( -u B / D ) ) ) |
| 10 | simpll | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> A e. CC ) |
|
| 11 | simprll | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> C e. CC ) |
|
| 12 | simprlr | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> C =/= 0 ) |
|
| 13 | divcl | |- ( ( A e. CC /\ C e. CC /\ C =/= 0 ) -> ( A / C ) e. CC ) |
|
| 14 | 10 11 12 13 | syl3anc | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( A / C ) e. CC ) |
| 15 | divcl | |- ( ( B e. CC /\ D e. CC /\ D =/= 0 ) -> ( B / D ) e. CC ) |
|
| 16 | 4 5 6 15 | syl3anc | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( B / D ) e. CC ) |
| 17 | 14 16 | negsubd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( A / C ) + -u ( B / D ) ) = ( ( A / C ) - ( B / D ) ) ) |
| 18 | 9 17 | eqtr3d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( A / C ) + ( -u B / D ) ) = ( ( A / C ) - ( B / D ) ) ) |
| 19 | 3 18 | eqtr3d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( ( A x. D ) + ( -u B x. C ) ) / ( C x. D ) ) = ( ( A / C ) - ( B / D ) ) ) |
| 20 | 4 11 | mulneg1d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( -u B x. C ) = -u ( B x. C ) ) |
| 21 | 20 | oveq2d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( A x. D ) + ( -u B x. C ) ) = ( ( A x. D ) + -u ( B x. C ) ) ) |
| 22 | 10 5 | mulcld | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( A x. D ) e. CC ) |
| 23 | 4 11 | mulcld | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( B x. C ) e. CC ) |
| 24 | 22 23 | negsubd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( A x. D ) + -u ( B x. C ) ) = ( ( A x. D ) - ( B x. C ) ) ) |
| 25 | 21 24 | eqtrd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( A x. D ) + ( -u B x. C ) ) = ( ( A x. D ) - ( B x. C ) ) ) |
| 26 | 25 | oveq1d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( ( A x. D ) + ( -u B x. C ) ) / ( C x. D ) ) = ( ( ( A x. D ) - ( B x. C ) ) / ( C x. D ) ) ) |
| 27 | 19 26 | eqtr3d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( A / C ) - ( B / D ) ) = ( ( ( A x. D ) - ( B x. C ) ) / ( C x. D ) ) ) |